IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3032-d370479.html
   My bibliography  Save this article

Switched Reluctance Generator for Low Voltage DC Microgrid Operation: Experimental Validation

Author

Listed:
  • Abdoulaye Sarr

    (Group of Electrical Engineering of Paris, CNRS, CentraleSupelec, Universite Paris-Saclay, 3-11 Rue Joliot Curie, 91192 Gif Sur Yvette, France)

  • Imen Bahri

    (Group of Electrical Engineering of Paris, CNRS, CentraleSupelec, Universite Paris-Saclay, 3-11 Rue Joliot Curie, 91192 Gif Sur Yvette, France)

  • Eric Berthelot

    (Group of Electrical Engineering of Paris, CNRS, CentraleSupelec, Universite Paris-Saclay, 3-11 Rue Joliot Curie, 91192 Gif Sur Yvette, France)

  • Abdoulaye Kebe

    (Ecole Nationale Superieure d’Enseignement Technique et Professionnel, Universite Cheikh Anta Diop, Dakar 999066, Senegal)

  • Demba Diallo

    (Group of Electrical Engineering of Paris, CNRS, CentraleSupelec, Universite Paris-Saclay, 3-11 Rue Joliot Curie, 91192 Gif Sur Yvette, France
    College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China)

Abstract

This paper presents the control of a Switched Reluctance Generator (SRG) for low voltage DC grid with the objective of efficiency maximizing. Analysis of the energy conversion, including electrical machine losses (Joule, magnetic, mechanical) and power converter losses (switching and conduction), has shown that there is an optimal combination of control variables (turn-on and conduction angles, phase current reference), which maximizes the drive efficiency. The control variables are derived from a Finite Element Analysis and parametric optimization algorithm for all of the operating points in the torque-speed plane and stored in lookup tables. The performances are evaluated with intensive numerical simulations and experimental tests with a 8/6 SRG feeding a DC resistive load for different rotational speeds. The results show good performances of the output DC voltage control with low ripples, even in the presence of speed and load variations. Thanks to the optimization, simulation results show that beyond 1500 rpm, drive efficiency is higher than 60 % and almost reaches 70 % at nominal speed. The experimental results show that, for light loads and beyond rated speed, the drive efficiency lies in the range between 60 % and 80 % .

Suggested Citation

  • Abdoulaye Sarr & Imen Bahri & Eric Berthelot & Abdoulaye Kebe & Demba Diallo, 2020. "Switched Reluctance Generator for Low Voltage DC Microgrid Operation: Experimental Validation," Energies, MDPI, vol. 13(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3032-:d:370479
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alfeu J. Sguarezi Filho & Tarcio Barros & Ernesto Ruppert, 2013. "Direct Power Control for Switched Reluctance Generator in Wind Energy," Chapters, in: S. M. Muyeen & Ahmed Al-Durra (ed.), Modeling and Control Aspects of Wind Power Systems, IntechOpen.
    2. Barros, Tarcio A.S. & Neto, Pedro J.S. & Filho, Paulo S.N. & Moreira, Adson B. & Ruppert, Ernesto, 2016. "Approach for performance optimization of switched reluctance generator in variable-speed wind generation system," Renewable Energy, Elsevier, vol. 97(C), pages 114-128.
    3. Shouliang Han & Shumei Cui & Liwei Song & Ching Chuen Chan, 2014. "Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles," Energies, MDPI, vol. 7(10), pages 1-24, October.
    4. Rui Mendes & Maria Do Rosário Calado & Sílvio Mariano, 2018. "Maximum Power Point Tracking for a Point Absorber Device with a Tubular Linear Switched Reluctance Generator," Energies, MDPI, vol. 11(9), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeineb Touati & Manuel Pereira & Rui Esteves Araújo & Adel Khedher, 2022. "Integration of Switched Reluctance Generator in a Wind Energy Conversion System: An Overview of the State of the Art and Challenges," Energies, MDPI, vol. 15(13), pages 1-25, June.
    2. Wanderson R. H. Araujo & Marcio R. C. Reis & Gabriel A. Wainer & Wesley P. Calixto, 2021. "Efficiency Enhancement of Switched Reluctance Generator Employing Optimized Control Associated with Tracking Technique," Energies, MDPI, vol. 14(24), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanderson R. H. Araujo & Marcio R. C. Reis & Gabriel A. Wainer & Wesley P. Calixto, 2021. "Efficiency Enhancement of Switched Reluctance Generator Employing Optimized Control Associated with Tracking Technique," Energies, MDPI, vol. 14(24), pages 1-26, December.
    2. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Xuhui Yue & Jintao Zhang & Feifeng Meng & Jiaying Liu & Qijuan Chen & Dazhou Geng, 2023. "Multi-Timescale Lookup Table Based Maximum Power Point Tracking of an Inverse-Pendulum Wave Energy Converter: Power Assessments and Sensitivity Study," Energies, MDPI, vol. 16(17), pages 1-25, August.
    4. Qingsong Wang & Shuangxia Niu, 2015. "Electromagnetic Design and Analysis of a Novel Fault-Tolerant Flux-Modulated Memory Machine," Energies, MDPI, vol. 8(8), pages 1-17, August.
    5. Aleš Hace, 2019. "The Advanced Control Approach based on SMC Design for the High-Fidelity Haptic Power Lever of a Small Hybrid Electric Aircraft," Energies, MDPI, vol. 12(15), pages 1-31, August.
    6. Zeineb Touati & Manuel Pereira & Rui Esteves Araújo & Adel Khedher, 2022. "Integration of Switched Reluctance Generator in a Wind Energy Conversion System: An Overview of the State of the Art and Challenges," Energies, MDPI, vol. 15(13), pages 1-25, June.
    7. Barros, Tarcio A.S. & Neto, Pedro J.S. & Filho, Paulo S.N. & Moreira, Adson B. & Ruppert, Ernesto, 2016. "Approach for performance optimization of switched reluctance generator in variable-speed wind generation system," Renewable Energy, Elsevier, vol. 97(C), pages 114-128.
    8. El-Hay, Enas A. & El-Hameed, Mohamed A. & El-Fergany, Attia A., 2018. "Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor," Energy, Elsevier, vol. 163(C), pages 699-711.
    9. Chun-Yu Hsiao & Chin-Hsiang Lai & Zhu-Xuan Zheng & Guan-Yu Li, 2021. "Design and Implement of Three-Phase Permanent-Magnet Synchronous Wave Generator using Taguchi Approach," Energies, MDPI, vol. 14(7), pages 1-17, April.
    10. Marios Charilaos Sousounis & Jonathan Shek, 2019. "Wave-to-Wire Power Maximization Control for All-Electric Wave Energy Converters with Non-Ideal Power Take-Off," Energies, MDPI, vol. 12(15), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3032-:d:370479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.