IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i6p2892-2926d26424.html
   My bibliography  Save this article

Transient Momentum Balance—A Method for Improving the Performance of Mean-Value Engine Plant Models

Author

Listed:
  • Tomaž Katrašnik

    (Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia)

Abstract

Mean-value engine models (MVEMs) are frequently applied in system-level simulations of vehicle powertrains. In particular, MVEMs are a common choice in engine simulators, where real-time execution is mandatory. In the case of real-time applications with prescribed, fixed sampling times, the use of explicit integration schemes is almost mandatory. Thus the stability of MVEMs is one of the main limitations when it comes to optimizing their performance. It is limited either by the minimum size of the gas volume elements or by the maximum integration time step. An innovative approach that addresses both constraints arises from the fact that the mass flow through the transfer elements of the MVEM is not modelled considering the quasi-steady assumption, but instead the mass-flow is calculated using a single transient momentum balance (TMB) equation. The proposed approach closely resembles phenomena in the physical model, since it considers both the flow-field history and the inertial effects arising from the time variation of the mass flow. It is shown in this paper that a consideration of the TMB equation improves the stability and/or the computational speed of the MVEMs, whereas it also makes it possible to capture physical phenomena in a more physically plausible manner.

Suggested Citation

  • Tomaž Katrašnik, 2013. "Transient Momentum Balance—A Method for Improving the Performance of Mean-Value Engine Plant Models," Energies, MDPI, vol. 6(6), pages 1-35, June.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:6:p:2892-2926:d:26424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/6/2892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/6/2892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Norbert Zsiga & Christoph Voser & Christopher Onder & Lino Guzzella, 2013. "Intake Manifold Boosting of Turbocharged Spark-Ignited Engines," Energies, MDPI, vol. 6(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galindo, José & Climent, Héctor & de la Morena, Joaquín & González-Domínguez, David & Guilain, Stéphane, 2023. "Assessment of air management strategies to improve the transient response of advanced gasoline engines operating under high EGR conditions," Energy, Elsevier, vol. 262(PB).
    2. Mohsen Ebrahimi & Qiangqiang Huang & Xiao He & Xinqian Zheng, 2017. "Effects of Variable Diffuser Vanes on Performance of a Centrifugal Compressor with Pressure Ratio of 8.0," Energies, MDPI, vol. 10(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:6:p:2892-2926:d:26424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.