IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i3p1746-1763d24240.html
   My bibliography  Save this article

Intake Manifold Boosting of Turbocharged Spark-Ignited Engines

Author

Listed:
  • Norbert Zsiga

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland)

  • Christoph Voser

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland)

  • Christopher Onder

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland)

  • Lino Guzzella

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland)

Abstract

Downsizing and turbocharging is a widely used approach to reduce the fuel consumption of spark ignited engines while retaining the maximum power output. However, a substantial loss in drivability must be expected due to the occurrence of the so-called turbo lag. The turbo lag results from the additional inertia that the turbocharger adds to the system. Supplying air by an additional valve, the boost valve, to the intake manifold can be used to overcome the turbo lag. This turbo lag compensationmethod is referred to as intakemanifold boosting. The aims of this study are to show the effectiveness of intake manifold boosting on a turbocharged spark-ignited engine and to show that intake manifold boosting can be used as an enabler of strong downsizing. Guidelines for the dimensioning of the boost valve are given and a control strategy is presented. The trade-off between additional fuel consumption and the consumption of pressurized air during the turbo lag compensation is discussed. For a load step at 2000 rpm the rise time can be reduced from 2.8 s to 124ms, requiring 11.8 g of pressurized air. The transient performance is verified experimentally by means of load steps at various engine speeds to various engine loads.

Suggested Citation

  • Norbert Zsiga & Christoph Voser & Christopher Onder & Lino Guzzella, 2013. "Intake Manifold Boosting of Turbocharged Spark-Ignited Engines," Energies, MDPI, vol. 6(3), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:3:p:1746-1763:d:24240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/3/1746/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/3/1746/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomaž Katrašnik, 2013. "Transient Momentum Balance—A Method for Improving the Performance of Mean-Value Engine Plant Models," Energies, MDPI, vol. 6(6), pages 1-35, June.
    2. Galindo, José & Climent, Héctor & de la Morena, Joaquín & González-Domínguez, David & Guilain, Stéphane, 2023. "Assessment of air management strategies to improve the transient response of advanced gasoline engines operating under high EGR conditions," Energy, Elsevier, vol. 262(PB).
    3. Mohsen Ebrahimi & Qiangqiang Huang & Xiao He & Xinqian Zheng, 2017. "Effects of Variable Diffuser Vanes on Performance of a Centrifugal Compressor with Pressure Ratio of 8.0," Energies, MDPI, vol. 10(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:3:p:1746-1763:d:24240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.