IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i1p312-328d22797.html
   My bibliography  Save this article

Simulation Research on an Electric Vehicle Chassis System Based on a Collaborative Control System

Author

Listed:
  • Jiankun Peng

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China)

  • Hongwen He

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China)

  • Nenglian Feng

    (College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract

This paper presents a collaborative control system for an electric vehicle chassis based on a centralized and hierarchical control architecture. The centralized controller was designed for the suspension and steering system, which is used for improving ride comfort and handling stability; the hierarchical controller was designed for the braking system, which is used for distributing the proportion of hydraulic braking and regenerative braking to improve braking performance. These two sub-controllers function at the same level of the vehicle chassis control system. In order to reduce the potential conflict between the two sub-controllers and realize a coordination optimization of electric vehicle performance, a collaborative controller was built, which serves as the upper controller to carry out an overall coordination analysis according to vehicle signals and revises the decisions of sub-controllers. A simulation experiment was carried out with the MATLAB/Simulink software. The simulation results show that the proposed collaborative control system can achieve an optimized vehicle handling stability and braking safety.

Suggested Citation

  • Jiankun Peng & Hongwen He & Nenglian Feng, 2013. "Simulation Research on an Electric Vehicle Chassis System Based on a Collaborative Control System," Energies, MDPI, vol. 6(1), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:1:p:312-328:d:22797
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/1/312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/1/312/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongwen He & Jiankun Peng & Rui Xiong & Hao Fan, 2014. "An Acceleration Slip Regulation Strategy for Four-Wheel Drive Electric Vehicles Based on Sliding Mode Control," Energies, MDPI, vol. 7(6), pages 1-16, June.
    2. Lin Zhao & Shaobo Lu & Bohan Zhang, 2019. "Game-Based Hierarchical Cooperative Control for Electric Vehicle Lateral Stability via Active Four-Wheel Steering and Direct Yaw-Moment Control," Energies, MDPI, vol. 12(17), pages 1-21, August.
    3. Jinhong Sun & Xiangdang Xue & Ka Wai Eric Cheng, 2019. "Fuzzy Sliding Mode Wheel Slip Ratio Control for Smart Vehicle Anti-Lock Braking System," Energies, MDPI, vol. 12(13), pages 1-22, June.
    4. Yu, Wei & Wang, Ruochen, 2019. "Development and performance evaluation of a comprehensive automotive energy recovery system with a refined energy management strategy," Energy, Elsevier, vol. 189(C).
    5. Zepeng Gao & Sizhong Chen & Yuzhuang Zhao & Jinrui Nan, 2018. "Height Adjustment of Vehicles Based on a Static Equilibrium Position State Observation Algorithm," Energies, MDPI, vol. 11(2), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:1:p:312-328:d:22797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.