IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i8p2692-2707d19098.html
   My bibliography  Save this article

Collector Efficiency in Downward-Type Double-Pass Solar Air Heaters with Attached Fins and Operated by External Recycle

Author

Listed:
  • Ho-Ming Yeh

    (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251, Taiwan)

  • Chii-Dong Ho

    (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251, Taiwan)

Abstract

The collector efficiency in a downward-type double-pass external-recycle solar air heater with fins attached on the absorbing plate has been investigated theoretically. Considerable improvement in collector efficiency is obtainable if the collector is equipped with fins and the operation is carried out with an external recycle. Due to the recycling, the desirable effect of increasing the heat transfer coefficient compensates for the undesirable effect of decreasing the driving force (temperature difference) of heat transfer, while the attached fins provide an enlarged heat transfer area. The order of performances in the devices of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.

Suggested Citation

  • Ho-Ming Yeh & Chii-Dong Ho, 2012. "Collector Efficiency in Downward-Type Double-Pass Solar Air Heaters with Attached Fins and Operated by External Recycle," Energies, MDPI, vol. 5(8), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:8:p:2692-2707:d:19098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/8/2692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/8/2692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naphon, Paisarn, 2005. "On the performance and entropy generation of the double-pass solar air heater with longitudinal fins," Renewable Energy, Elsevier, vol. 30(9), pages 1345-1357.
    2. Yeh, Ho-Ming & Ting, Young-Chun, 1986. "Effects of free convection on collector efficiencies of solar air heaters," Applied Energy, Elsevier, vol. 22(2), pages 145-155.
    3. Yeh, Ho-ming & Lin, Tong-Tshien, 1995. "The effect of collector aspect ratio on the collector efficiency of flat-plate solar air heaters," Energy, Elsevier, vol. 20(10), pages 1041-1047.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Rajesh & Chand, Prabha, 2017. "Performance enhancement of solar air heater using herringbone corrugated fins," Energy, Elsevier, vol. 127(C), pages 271-279.
    2. Wazed, M.A. & Nukman, Y. & Islam, M.T., 2010. "Design and fabrication of a cost effective solar air heater for Bangladesh," Applied Energy, Elsevier, vol. 87(10), pages 3030-3036, October.
    3. Yeh, H.M. & Ho, C.D. & Yeh, C.W., 2003. "Effect of aspect ratio on the collector efficiency of sheet-and-tube solar water heaters with the consideration of hydraulic dissipated energy," Renewable Energy, Elsevier, vol. 28(10), pages 1575-1586.
    4. Ho, C.D. & Chen, T.C., 2006. "The recycle effect on the collector efficiency improvement of double-pass sheet-and-tube solar water heaters with external recycle," Renewable Energy, Elsevier, vol. 31(7), pages 953-970.
    5. Yeh, Ho-Ming & Ho, Chii-Dong, 2009. "Effect of external recycle on the performances of flat-plate solar air heaters with internal fins attached," Renewable Energy, Elsevier, vol. 34(5), pages 1340-1347.
    6. Yeh, H.-M. & Ho, C.-D. & Hou, J.-Z., 2002. "Collector efficiency of double-flow solar air heaters with fins attached," Energy, Elsevier, vol. 27(8), pages 715-727.
    7. Yeh, Ho-Ming & Ho, Chii-Dong & Hou, Jun-Ze, 1999. "The improvement of collector efficiency in solar air heaters by simultaneously air flow over and under the absorbing plate," Energy, Elsevier, vol. 24(10), pages 857-871.
    8. Tonui, J.K. & Tripanagnostopoulos, Y., 2007. "Improved PV/T solar collectors with heat extraction by forced or natural air circulation," Renewable Energy, Elsevier, vol. 32(4), pages 623-637.
    9. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    10. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    11. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    12. Chii-Dong Ho & Hsuan Chang & Chih-Wei Yeh & Choon-Aun Ng & Ping-Cheng Hsieh, 2023. "Optimizing Device Performance of Multi-Pass Flat-Plate Solar Air Heaters on Various Recycling Configurations," Energies, MDPI, vol. 16(6), pages 1-22, March.
    13. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    14. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    15. Hasan, M. Arif & Sumathy, K., 2010. "Photovoltaic thermal module concepts and their performance analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1845-1859, September.
    16. Ho-Ming Yeh & Chii-Dong Ho, 2013. "Collector Efficiency in Downward-Type Internal-Recycle Solar Air Heaters with Attached Fins," Energies, MDPI, vol. 6(10), pages 1-15, October.
    17. Nguyen Minh Phu & Ngo Thien Tu & Nguyen Van Hap, 2021. "Thermohydraulic Performance and Entropy Generation of a Triple-Pass Solar Air Heater with Three Inlets," Energies, MDPI, vol. 14(19), pages 1-19, October.
    18. Tyagi, V.V. & Panwar, N.L. & Rahim, N.A. & Kothari, Richa, 2012. "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2289-2303.
    19. Ho, C.D. & Yeh, H.M. & Wang, R.C., 2005. "Heat-transfer enhancement in double-pass flat-plate solar air heaters with recycle," Energy, Elsevier, vol. 30(15), pages 2796-2817.
    20. Benhamza, Abderrahmane & Boubekri, Abdelghani & Atia, Abdelmalek & El Ferouali, Hicham & Hadibi, Tarik & Arıcı, Müslüm & Abdenouri, Naji, 2021. "Multi-objective design optimization of solar air heater for food drying based on energy, exergy and improvement potential," Renewable Energy, Elsevier, vol. 169(C), pages 1190-1209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:8:p:2692-2707:d:19098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.