IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i7p2524-2544d18919.html
   My bibliography  Save this article

Dynamic Modeling of Anode Function in Enzyme-Based Biofuel Cells Using High Mediator Concentration

Author

Listed:
  • Der-Sheng Chan

    (Department of Chemical and Materials Engineering, Lee-Ming Institute of Technology, Tai-Sham 24305, Taiwan)

  • Der-Jong Dai

    (Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan)

  • Ho-Shing Wu

    (Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan)

Abstract

The working principle of enzyme-based biofuel cells (EBFCs) is the same as that of conventional fuel cells. In an EBFC system, the electricity-production process is very intricate. Analysis requires a mathematical model that can adequately describe the EBFC and predict its performance. This paper develops a dynamic model simulating the discharge performance of the anode for which supported glucose oxidase and mediator immobilize in the EBFC. The dynamic transport behavior of substrate, redox state (ROS) of enzyme, enzyme-substrate complex, and the mediator creates different potential changes inside the anode. The potential-step method illustrates the dynamic phenomena of substrate diffusion, ROS of enzyme, production of enzyme-substrate complex, and reduction of the mediator with different potential changes.

Suggested Citation

  • Der-Sheng Chan & Der-Jong Dai & Ho-Shing Wu, 2012. "Dynamic Modeling of Anode Function in Enzyme-Based Biofuel Cells Using High Mediator Concentration," Energies, MDPI, vol. 5(7), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:7:p:2524-2544:d:18919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/7/2524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/7/2524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ivan Ivanov & Tanja Vidaković-Koch & Kai Sundmacher, 2010. "Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling," Energies, MDPI, vol. 3(4), pages 1-44, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Violetta Vasilenko & Irina Arkadeva & Vera Bogdanovskaya & George Sudarev & Sergei Kalenov & Marco Vocciante & Eleonora Koltsova, 2020. "Glucose-Oxygen Biofuel Cell with Biotic and Abiotic Catalysts: Experimental Research and Mathematical Modeling," Energies, MDPI, vol. 13(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dario Pelosi & Linda Barelli & Nicolò Montegiove & Eleonora Calzoni & Alessio Cesaretti & Alessandro Di Michele & Carla Emiliani & Luca Gammaitoni, 2022. "Immobilizing Enzymes on a Commercial Polymer: Performance Analysis of a GOx-Laccase Based Enzymatic Biofuel Cell Assembly," Energies, MDPI, vol. 15(6), pages 1-12, March.
    2. Linda Barelli & Gianni Bidini & Dario Pelosi & Elena Sisani, 2021. "Enzymatic Biofuel Cells: A Review on Flow Designs," Energies, MDPI, vol. 14(4), pages 1-26, February.
    3. Violetta Vasilenko & Irina Arkadeva & Vera Bogdanovskaya & George Sudarev & Sergei Kalenov & Marco Vocciante & Eleonora Koltsova, 2020. "Glucose-Oxygen Biofuel Cell with Biotic and Abiotic Catalysts: Experimental Research and Mathematical Modeling," Energies, MDPI, vol. 13(21), pages 1-21, October.
    4. Ihor Sobianin & Sotiria D. Psoma & Antonios Tourlidakis, 2022. "Recent Advances in Energy Harvesting from the Human Body for Biomedical Applications," Energies, MDPI, vol. 15(21), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:7:p:2524-2544:d:18919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.