IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i6p1982-1997d18444.html
   My bibliography  Save this article

Double-Linear Approximation Algorithm to Achieve Maximum-Power-Point Tracking for Photovoltaic Arrays

Author

Listed:
  • Chih-Lung Shen

    (Department of Electronic Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 824, Taiwan)

  • Cheng-Tao Tsai

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan)

Abstract

In this paper, a double-linear approximation algorithm (DLAA) to achieve maximum-power-point tracking (MPPT) for photovoltaic (PV) arrays is proposed. The DLAA is based on the approximation that the maximum power point varies linearly with irradiation and temperature. With the DLAA, a maximum power point can be determined instantaneously. Moreover, complicated calculations and perturbations about an optimal point can be avoided. The paper also proposes a corresponding circuit to realize the DLAA. The configuration of the DLAA circuit is simple such that it is cost-effective and can be embedded into PV arrays easily. An example of implementation of a PV power supply system with the proposed MPPT is designed and the DLAA is compared with the perturb-and-observe method. Simulated and experimental results have demonstrated the feasibility of the PV power system and verified the advantages of the proposed DLAA.

Suggested Citation

  • Chih-Lung Shen & Cheng-Tao Tsai, 2012. "Double-Linear Approximation Algorithm to Achieve Maximum-Power-Point Tracking for Photovoltaic Arrays," Energies, MDPI, vol. 5(6), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:6:p:1982-1997:d:18444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/6/1982/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/6/1982/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    2. Cheng-Tao Tsai & Wang-Min Chen, 2016. "Buck Converter with Soft-Switching Cells for PV Panel Applications," Energies, MDPI, vol. 9(3), pages 1-16, March.
    3. Po-Chen Cheng & Bo-Rei Peng & Yi-Hua Liu & Yu-Shan Cheng & Jia-Wei Huang, 2015. "Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique," Energies, MDPI, vol. 8(6), pages 1-23, June.
    4. Cheng-Tao Tsai & Ying-Che Kuo & Ying-Piao Kuo & Chin-Tsung Hsieh, 2015. "A Reflex Charger with ZVS and Non-Dissipative Cells for Photovoltaic Energy Conversion," Energies, MDPI, vol. 8(2), pages 1-17, February.
    5. Cheng-Tao Tsai & Chih-Lung Shen & Jye-Chau Su, 2013. "A Power Supply System with ZVS and Current-Doubler Features for Hybrid Renewable Energy Conversion," Energies, MDPI, vol. 6(9), pages 1-20, September.
    6. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.
    7. Cheng-Tao Tsai & Chih-Lung Shen, 2012. "A High Step-Down Interleaved Buck Converter with Active-Clamp Circuits for Wind Turbines," Energies, MDPI, vol. 5(12), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:6:p:1982-1997:d:18444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.