IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i10p3874-3891d20624.html
   My bibliography  Save this article

Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine

Author

Listed:
  • Yongsheng Zhao

    (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

  • Jianmin Yang

    (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

  • Yanping He

    (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

Abstract

Currently, floating wind turbines (FWTs) may be the more economical and suitable systems with which to exploit offshore wind energy in deep waters. Among the various types of floating foundations for offshore wind farms, a tension leg platform (TLP) foundation can provide a relatively stable platform for currently available offshore wind turbines without requiring major modifications. In this study, a new multi-column TLP foundation (WindStar TLP) was developed for the NREL 5-MW offshore wind turbine according to site-specific environmental conditions, which are the same as the OC3-Hywind (NREL) conditions. The general arrangement, main structure and mooring system were also designed and investigated through hydrodynamic and natural frequency analyses. The complete system avoids resonance through the rotor excitations. An aero-hydro-servo-elastic coupled analysis was carried out in the time domain with the numerical tool FAST. Statistics of the key parameters were obtained and analysed and comparisons to MIT/NREL TLP are made. As a result, the design requirements were shown to be satisfied, and the proposed WindStar TLP was shown to have favourable motion characteristics under extreme wind and wave conditions with a lighter and smaller structure. The new concept holds great potential for further development.

Suggested Citation

  • Yongsheng Zhao & Jianmin Yang & Yanping He, 2012. "Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine," Energies, MDPI, vol. 5(10), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:10:p:3874-3891:d:20624
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/10/3874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/10/3874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nianxin Ren & Yugang Li & Jinping Ou, 2012. "The Effect of Additional Mooring Chains on the Motion Performance of a Floating Wind Turbine with a Tension Leg Platform," Energies, MDPI, vol. 5(4), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Yaqoob Javed & Iqbal Ahmed Khurshid & Aamer Bilal Asghar & Syed Tahir Hussain Rizvi & Kamal Shahid & Krzysztof Ejsmont, 2022. "An Efficient Estimation of Wind Turbine Output Power Using Neural Networks," Energies, MDPI, vol. 15(14), pages 1-22, July.
    2. Antonutti, Raffaello & Peyrard, Christophe & Johanning, Lars & Incecik, Atilla & Ingram, David, 2016. "The effects of wind-induced inclination on the dynamics of semi-submersible floating wind turbines in the time domain," Renewable Energy, Elsevier, vol. 88(C), pages 83-94.
    3. Borg, Michael & Collu, Maurizio & Kolios, Athanasios, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1226-1234.
    4. Yang, J.J. & He, E.M., 2020. "Coupled modeling and structural vibration control for floating offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 678-694.
    5. Zhe Ma & Nianxin Ren & Yin Wang & Shaoxiong Wang & Wei Shi & Gangjun Zhai, 2019. "A Comprehensive Study on the Serbuoys Offshore Wind Tension Leg Platform Coupling Dynamic Response under Typical Operational Conditions," Energies, MDPI, vol. 12(11), pages 1-17, May.
    6. Ren, Yajun & Shi, Wei & Venugopal, Vengatesan & Zhang, Lixian & Li, Xin, 2024. "Experimental study of tendon failure analysis for a TLP floating offshore wind turbine," Applied Energy, Elsevier, vol. 358(C).
    7. Du, Weikang & Zhao, Yongsheng & He, Yanping & Liu, Yadong, 2016. "Design, analysis and test of a model turbine blade for a wave basin test of floating wind turbines," Renewable Energy, Elsevier, vol. 97(C), pages 414-421.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borg, Michael & Collu, Maurizio & Kolios, Athanasios, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1226-1234.
    2. Zhe Ma & Nianxin Ren & Yin Wang & Shaoxiong Wang & Wei Shi & Gangjun Zhai, 2019. "A Comprehensive Study on the Serbuoys Offshore Wind Tension Leg Platform Coupling Dynamic Response under Typical Operational Conditions," Energies, MDPI, vol. 12(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:10:p:3874-3891:d:20624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.