IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i12p1991-2000d10651.html
   My bibliography  Save this article

Gas Hydrate Stability and Sampling: The Future as Related to the Phase Diagram

Author

Listed:
  • E. Dendy Sloan

    (Center for Hydrate Research, Chemical Engineering Department, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, USA)

  • Carolyn A. Koh

    (Center for Hydrate Research, Chemical Engineering Department, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, USA)

  • Amadeu K. Sum

    (Center for Hydrate Research, Chemical Engineering Department, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, USA)

Abstract

The phase diagram for methane + water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for “Round Robin” hydrate sample preparation protocols and testing.

Suggested Citation

  • E. Dendy Sloan & Carolyn A. Koh & Amadeu K. Sum, 2010. "Gas Hydrate Stability and Sampling: The Future as Related to the Phase Diagram," Energies, MDPI, vol. 3(12), pages 1-10, December.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:12:p:1991-2000:d:10651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/12/1991/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/12/1991/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ye & Gao, Yonghai & Zhao, Yipeng & Chen, Litao & Dong, Changyin & Sun, Baojiang, 2018. "Experimental investigation of different factors influencing the replacement efficiency of CO2 for methane hydrate," Applied Energy, Elsevier, vol. 228(C), pages 309-316.
    2. Taehun Lee & Hanam Son & Jooyong Lee & Taewoong Ahn & Nyeonkeon Kang, 2022. "Geomechanically Sustainable Gas Hydrate Production Using a 3D Geological Model in the Ulleung Basin of the Korean East Sea," Energies, MDPI, vol. 15(7), pages 1-17, April.
    3. Oleg Bazaluk & Kateryna Sai & Vasyl Lozynskyi & Mykhailo Petlovanyi & Pavlo Saik, 2021. "Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea," Energies, MDPI, vol. 14(5), pages 1-24, March.
    4. Thakre, Niraj & Jana, Amiya K., 2021. "Physical and molecular insights to Clathrate hydrate thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:12:p:1991-2000:d:10651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.