IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1214-d1603592.html
   My bibliography  Save this article

Evaluating the Impact of Dirt Accumulation on Photovoltaic Performance: Insights from an Experimental Plant in Brazil

Author

Listed:
  • Mylena Cruzinha da Silva

    (Graduate Program in Electrical Engineering (PPGEE), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil)

  • Dener A. de L. Brandao

    (Graduate Program in Electrical Engineering (PPGEE), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil)

  • Igor A. Pires

    (Graduate Program in Electrical Engineering (PPGEE), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
    Department of Electronic Engineering (DELT), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil)

Abstract

In recent decades, the use of photovoltaic (PV) modules as a source of electricity has grown significantly, driven largely by government incentives and regulatory advancements. However, merely installing these systems does not ensure optimal energy production, as maximizing solar energy capture requires additional measures. This study examines the impact of dirt accumulation on PV modules, focusing on a system installed at the School of Engineering of the Federal University of Minas Gerais (UFMG) in Belo Horizonte, Brazil. The research involved visual and thermographic analyses, as well as an evaluation of the I–V and P–V curve behavior for specific system arrays, which were cleaned during the 2024 dry season. Electrical parameters were compared between the dirty and cleaned states of the system, and the soiling ratio (SR) was calculated, ranging from 0.91 in the most affected case to 0.93 in the least affected.

Suggested Citation

  • Mylena Cruzinha da Silva & Dener A. de L. Brandao & Igor A. Pires, 2025. "Evaluating the Impact of Dirt Accumulation on Photovoltaic Performance: Insights from an Experimental Plant in Brazil," Energies, MDPI, vol. 18(5), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1214-:d:1603592
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pankaj Borah & Leonardo Micheli & Nabin Sarmah, 2023. "Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    2. Klugmann-Radziemska, Ewa & Ostrowski, Piotr, 2010. "Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules," Renewable Energy, Elsevier, vol. 35(8), pages 1751-1759.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Sukmin & Yoo, Sungyeol & Lee, Jina & Boo, Bonghyun & Ryu, Hojin, 2012. "Experimental investigations for recycling of silicon and glass from waste photovoltaic modules," Renewable Energy, Elsevier, vol. 47(C), pages 152-159.
    2. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    3. Akinyele, D.O. & Rayudu, R.K. & Nair, N.K.C., 2015. "Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation − Application in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 112-139.
    4. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Mukwevho, Nehemiah & Mkhohlakali, Andile & Ntsasa, Napo & Sehata, James & Chimuka, Luke & Tshilongo, James & Letsoalo, Mokgehle R., 2025. "Methodological approaches for resource recovery from end-of-life panels of different generations of photovoltaic technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    6. Zahraa M. Rashak & Kadhim H. Hassan & Mustafa Al-Fartoos & Yusuf Chanchangi & Mohammad Hadi Mohammadi & Asif Ali Tahir, 2024. "Assessing Environmental Dynamics and Angular Influence on PV Soiling: Employing ANFIS to Mitigate Power Losses," Energies, MDPI, vol. 17(23), pages 1-22, November.
    7. Jun-Kyu Lee & Jin-Seok Lee & Young-Soo Ahn & Gi-Hwan Kang, 2019. "Restoring the Reactivity of Organic Acid Solution Used for Silver Recovery from Solar Cells by Fractional Distillation," Sustainability, MDPI, vol. 11(13), pages 1-9, July.
    8. Songi Kim & Bongju Jeong, 2016. "Closed-Loop Supply Chain Planning Model for a Photovoltaic System Manufacturer with Internal and External Recycling," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
    9. Magdalena Bogacka & Martyna Potempa & Bartłomiej Milewicz & Dariusz Lewandowski & Krzysztof Pikoń & Katarzyna Klejnowska & Piotr Sobik & Edyta Misztal, 2020. "PV Waste Thermal Treatment According to the Circular Economy Concept," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    10. El-Khawad, Livia & Bartkowiak, Dorota & Kümmerer, Klaus, 2022. "Improving the end-of-life management of solar panels in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Cucchiella, Federica & D׳Adamo, Idiano & Rosa, Paolo, 2015. "End-of-Life of used photovoltaic modules: A financial analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 552-561.
    12. Ganesan, Kishore & Valderrama, César, 2022. "Anticipatory life cycle analysis framework for sustainable management of end-of-life crystalline silicon photovoltaic panels," Energy, Elsevier, vol. 245(C).
    13. Omar H. AL-Zoubi & Moayyad Shawaqfah & Fares Almomani & Rebhi A. Damash & Kamel Al-Zboon, 2022. "Photovoltaic Solar Cells and Panels Waste in Jordan: Figures, Facts, and Concerns," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    14. Yan Li & Ge Wang & Bo Shen & Qi Zhang & Boyu Liu & Ruoxi Xu, 2021. "Conception and policy implications of photovoltaic modules end‐of‐life management in China," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(1), January.
    15. Jongwon Ko & Kyunghwan Kim & Ji Woo Sohn & Hongjun Jang & Hae-Seok Lee & Donghwan Kim & Yoonmook Kang, 2023. "Review on Separation Processes of End-of-Life Silicon Photovoltaic Modules," Energies, MDPI, vol. 16(11), pages 1-20, May.
    16. Marta Redondo & Carlos Antonio Platero & Antonio Moset & Fernando Rodríguez & Vicente Donate, 2024. "Review and Comparison of Methods for Soiling Modeling in Large Grid-Connected PV Plants," Sustainability, MDPI, vol. 16(24), pages 1-18, December.
    17. Kastanaki, Eleni & Giannis, Apostolos, 2022. "Energy decarbonisation in the European Union: Assessment of photovoltaic waste recycling potential," Renewable Energy, Elsevier, vol. 192(C), pages 1-13.
    18. Peeters, Jef R. & Altamirano, Diego & Dewulf, Wim & Duflou, Joost R., 2017. "Forecasting the composition of emerging waste streams with sensitivity analysis: A case study for photovoltaic (PV) panels in Flanders," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 14-26.
    19. Vellini, Michela & Gambini, Marco & Prattella, Valentina, 2017. "Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels," Energy, Elsevier, vol. 138(C), pages 1099-1111.
    20. Jovan Tan & Shuyue Jia & Seeram Ramakrishna, 2022. "End-of-Life Photovoltaic Modules," Energies, MDPI, vol. 15(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1214-:d:1603592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.