IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1125-d1599265.html
   My bibliography  Save this article

Forecasting Wind Farm Production in the Short, Medium, and Long Terms Using Various Machine Learning Algorithms

Author

Listed:
  • Gökhan Ekinci

    (Department of Motor Vehicles and Transportation Technologies, Vocational School of Technical Sciences, Usak University, 64200 Usak, Türkiye)

  • Harun Kemal Ozturk

    (Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, 20160 Pamukkale, Türkiye)

Abstract

Wind energy is a crucial renewable resource for sustainable power generation; however, challenges such as high initial investment costs and difficulties in identifying efficient locations hinder its widespread adoption. Accurate wind energy forecasting is essential for energy planning, trading, and grid optimization. This study presents short-term, medium-term, and long-term –wind power forecasts for the Söke–Çatalbük Wind Power Plant in Aydın, Turkey, using meteorological data and production records from 2018 to 2022. Five machine learning algorithms were employed—Artificial Neural Network (ANN), Random Forest (RF), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors Regression (KNN), and Multi-Layer Perceptron (MLP ANN)—utilizing both MinMax and Standard Scaling methods. Prediction performance was evaluated using Mean Absolute Error (MAE), Coefficient of Determination (R 2 ), and Root Mean Square Error (RMSE) metrics. The results indicate that Min-Max Scaling improved short-term predictions with KNN, while XGBoost and Random Forest provided more stable and accurate forecasts in medium- and long-term predictions. Additionally, Standard Scaling significantly enhanced MLP ANN’s performance in medium-term forecasting. These findings provide practical insights for optimizing wind energy forecasting models, which can improve energy trading strategies, enhance grid stability, and support informed decision making in renewable energy investments. The results are particularly valuable for energy planners and policymakers seeking to maximize the efficiency of wind power plants and facilitate the integration of renewable energy sources into national grids more effectively.

Suggested Citation

  • Gökhan Ekinci & Harun Kemal Ozturk, 2025. "Forecasting Wind Farm Production in the Short, Medium, and Long Terms Using Various Machine Learning Algorithms," Energies, MDPI, vol. 18(5), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1125-:d:1599265
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Ponkumar & S. Jayaprakash & Karthick Kanagarathinam, 2023. "Advanced Machine Learning Techniques for Accurate Very-Short-Term Wind Power Forecasting in Wind Energy Systems Using Historical Data Analysis," Energies, MDPI, vol. 16(14), pages 1-24, July.
    2. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    3. Hu, Chao & Jain, Gaurav & Zhang, Puqiang & Schmidt, Craig & Gomadam, Parthasarathy & Gorka, Tom, 2014. "Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery," Applied Energy, Elsevier, vol. 129(C), pages 49-55.
    4. Çevik, Hasan Hüseyin & Çunkaş, Mehmet & Polat, Kemal, 2019. "A new multistage short-term wind power forecast model using decomposition and artificial intelligence methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Gökçek, Murat & Bayülken, Ahmet & Bekdemir, Şükrü, 2007. "Investigation of wind characteristics and wind energy potential in Kirklareli, Turkey," Renewable Energy, Elsevier, vol. 32(10), pages 1739-1752.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Ouassaid, Mohammed, 2023. "Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window," Energy, Elsevier, vol. 263(PE).
    2. Yuyang Gao & Chao Qu & Kequan Zhang, 2016. "A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(10), pages 1-28, September.
    3. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    4. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    6. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    7. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    8. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    9. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    10. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    11. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    12. Ramirez Camargo, Luis & Gruber, Katharina & Nitsch, Felix, 2019. "Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems," Renewable Energy, Elsevier, vol. 133(C), pages 1468-1478.
    13. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    14. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    15. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    16. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    17. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    18. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    19. Chandel, S.S. & Ramasamy, P. & Murthy, K.S.R, 2014. "Wind power potential assessment of 12 locations in western Himalayan region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 530-545.
    20. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1125-:d:1599265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.