Author
Listed:
- Xiaoxi Liu
(Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, China)
- Libo Jiang
(Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, China)
- Tianwen Zheng
(Anhui USEM Technology Co., Ltd., Wuhu 241100, China)
- Zhengwei Zhu
(School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China)
Abstract
Reconfigurable new energy storage can effectively address the security and limitation issues associated with traditional battery energy storage. To enhance the reliability of the microgrid system and ensure power balance among generation units, this paper proposes a power coordination control strategy based on reconfigurable energy storage. First, a new microgrid system incorporating reconfigurable energy storage, photovoltaic power generation, and a supercapacitor is introduced. By leveraging the structural advantages of reconfigurable energy storage, the potential safety hazards of traditional battery energy storage can be mitigated and the reliability of the microgrid system can be improved. Second, a novel control strategy for reconfigurable energy storage, photovoltaic units, and supercapacitors is proposed. The reconfigurable energy storage achieves constant current charge/discharge control through a DC-DC converter, while the supercapacitor maintains DC bus voltage stability via another DC–DC converter. Next, the power flow relationship within the microgrid system is analyzed. The dynamic reconfiguration characteristics of the reconfigurable energy storage, combined with the high power density of the supercapacitor, enable dynamic compensation of the photovoltaic power generation unit to meet the load’s power demand. Finally, a simulation model is developed in the MATLAB/Simulink environment to compare and analyze the power compensation effects of traditional energy storage and reconfigurable energy storage. The results demonstrate that the proposed control strategy achieves constant current charge/discharge control for reconfigurable energy storage, addressing the issue of battery life degradation caused by the continuous variation in charge/discharge current when traditional energy storage compensates for photovoltaic fluctuations. Additionally, the proposed control strategy can effectively and rapidly adjust the system’s power output, mitigating power fluctuations caused by variations in photovoltaic generation and load changes in the microgrid system, thereby improving the system’s reliability and stability.
Suggested Citation
Xiaoxi Liu & Libo Jiang & Tianwen Zheng & Zhengwei Zhu, 2025.
"Research on Power Coordination Control Strategy of Microgrid Based on Reconfigurable Energy Storage,"
Energies, MDPI, vol. 18(5), pages 1-20, February.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:5:p:1040-:d:1596350
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1040-:d:1596350. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.