IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1040-d1596350.html
   My bibliography  Save this article

Research on Power Coordination Control Strategy of Microgrid Based on Reconfigurable Energy Storage

Author

Listed:
  • Xiaoxi Liu

    (Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, China)

  • Libo Jiang

    (Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, China)

  • Tianwen Zheng

    (Anhui USEM Technology Co., Ltd., Wuhu 241100, China)

  • Zhengwei Zhu

    (School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract

Reconfigurable new energy storage can effectively address the security and limitation issues associated with traditional battery energy storage. To enhance the reliability of the microgrid system and ensure power balance among generation units, this paper proposes a power coordination control strategy based on reconfigurable energy storage. First, a new microgrid system incorporating reconfigurable energy storage, photovoltaic power generation, and a supercapacitor is introduced. By leveraging the structural advantages of reconfigurable energy storage, the potential safety hazards of traditional battery energy storage can be mitigated and the reliability of the microgrid system can be improved. Second, a novel control strategy for reconfigurable energy storage, photovoltaic units, and supercapacitors is proposed. The reconfigurable energy storage achieves constant current charge/discharge control through a DC-DC converter, while the supercapacitor maintains DC bus voltage stability via another DC–DC converter. Next, the power flow relationship within the microgrid system is analyzed. The dynamic reconfiguration characteristics of the reconfigurable energy storage, combined with the high power density of the supercapacitor, enable dynamic compensation of the photovoltaic power generation unit to meet the load’s power demand. Finally, a simulation model is developed in the MATLAB/Simulink environment to compare and analyze the power compensation effects of traditional energy storage and reconfigurable energy storage. The results demonstrate that the proposed control strategy achieves constant current charge/discharge control for reconfigurable energy storage, addressing the issue of battery life degradation caused by the continuous variation in charge/discharge current when traditional energy storage compensates for photovoltaic fluctuations. Additionally, the proposed control strategy can effectively and rapidly adjust the system’s power output, mitigating power fluctuations caused by variations in photovoltaic generation and load changes in the microgrid system, thereby improving the system’s reliability and stability.

Suggested Citation

  • Xiaoxi Liu & Libo Jiang & Tianwen Zheng & Zhengwei Zhu, 2025. "Research on Power Coordination Control Strategy of Microgrid Based on Reconfigurable Energy Storage," Energies, MDPI, vol. 18(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1040-:d:1596350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1040/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1040/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nataliia Shamarova & Konstantin Suslov & Pavel Ilyushin & Ilia Shushpanov, 2022. "Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Spiller & Giuliano Rancilio & Filippo Bovera & Giacomo Gorni & Stefano Mandelli & Federico Bresciani & Marco Merlo, 2023. "A Model-Aware Comprehensive Tool for Battery Energy Storage System Sizing," Energies, MDPI, vol. 16(18), pages 1-24, September.
    2. Vladislav Volnyi & Pavel Ilyushin & Konstantin Suslov & Sergey Filippov, 2023. "Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks," Energies, MDPI, vol. 16(15), pages 1-26, August.
    3. Aleksandr Kulikov & Pavel Ilyushin & Aleksandr Sevostyanov & Sergey Filippov & Konstantin Suslov, 2024. "Estimation of an Extent of Sinusoidal Voltage Waveform Distortion Using Parametric and Nonparametric Multiple-Hypothesis Sequential Testing in Devices for Automatic Control of Power Quality Indices," Energies, MDPI, vol. 17(5), pages 1-24, February.
    4. Nisitha Padmawansa & Kosala Gunawardane & Samaneh Madanian & Amanullah Maung Than Oo, 2023. "Battery Energy Storage Capacity Estimation for Microgrids Using Digital Twin Concept," Energies, MDPI, vol. 16(12), pages 1-18, June.
    5. Pavel Ilyushin & Vladislav Volnyi & Konstantin Suslov & Sergey Filippov, 2023. "State-of-the-Art Literature Review of Power Flow Control Methods for Low-Voltage AC and AC-DC Microgrids," Energies, MDPI, vol. 16(7), pages 1-35, March.
    6. Ilyushin, Pavel & Filippov, Sergey & Suslov, Konstantin, 2024. "Features of planning and managing power flows in distribution grids of megalopolises," Renewable Energy, Elsevier, vol. 235(C).
    7. Joelson Lopes da Paixão & Alzenira da Rosa Abaide & Gabriel Henrique Danielsson & Jordan Passinato Sausen & Leonardo Nogueira Fontoura da Silva & Nelson Knak Neto, 2025. "Optimized Strategy for Energy Management in an EV Fast Charging Microgrid Considering Storage Degradation," Energies, MDPI, vol. 18(5), pages 1-34, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1040-:d:1596350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.