IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p956-d1592967.html
   My bibliography  Save this article

Towards Digital Twin Modeling and Applications for Permanent Magnet Synchronous Motors

Author

Listed:
  • Grace Firsta Lukman

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea)

  • Cheewoo Lee

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea)

Abstract

This paper explores the potential of Digital Twin (DT) technology for Permanent Magnet Synchronous Motors (PMSMs) and establishes a foundation for its modeling and applications. While DTs have been widely applied in complex systems and simulation software, their use in electric motors, especially PMSMs, remains limited. This study examines physics-based, data-driven, and hybrid modeling approaches and evaluates their feasibility for real-time simulation, fault detection, and predictive maintenance. It also identifies key challenges such as computational demands, data integration, and the lack of standardized frameworks. By assessing current developments and outlining future directions, this work provides insights into how DTs can be implemented for PMSMs and drive advancements in industrial applications.

Suggested Citation

  • Grace Firsta Lukman & Cheewoo Lee, 2025. "Towards Digital Twin Modeling and Applications for Permanent Magnet Synchronous Motors," Energies, MDPI, vol. 18(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:956-:d:1592967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song Guo & Xiangdong Su & Hang Zhao, 2024. "Optimal Design of an Interior Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using a Machine Learning-Based Surrogate Model," Energies, MDPI, vol. 17(16), pages 1-19, August.
    2. Lin Liu & Youguang Guo & Wenliang Yin & Gang Lei & Jianguo Zhu, 2022. "Design and Optimization Technologies of Permanent Magnet Machines and Drive Systems Based on Digital Twin Model," Energies, MDPI, vol. 15(17), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Pejush Sarker & Jianguo Zhu, 2022. "Characterization of Rotational Magnetic Properties of Amorphous Metal Materials for Advanced Electrical Machine Design and Analysis," Energies, MDPI, vol. 15(20), pages 1-18, October.
    2. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2022. "Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis," Energies, MDPI, vol. 16(1), pages 1-11, December.
    3. Ihor Shchur & Marek Lis & Yurii Biletskyi, 2023. "A Non-Equilibrium Thermodynamic Approach for Analysis of Power Conversion Efficiency in the Wind Energy System," Energies, MDPI, vol. 16(13), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:956-:d:1592967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.