IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p788-d1586456.html
   My bibliography  Save this article

Improving Energy Efficiency in the Management of Drilling Waste from Trenchless Gas and Power Pipeline Construction Through the Implementation of Photovoltaic Panels and Circular Economy Principles

Author

Listed:
  • Aleksandra Jamrozik

    (Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Krakow, 30-059 Krakow, Poland)

  • Jan Ziaja

    (Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Krakow, 30-059 Krakow, Poland)

  • Sławomir Wysocki

    (Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Krakow, 30-059 Krakow, Poland)

Abstract

The modern construction of transmission networks for transporting energy resources (e.g., crude oil, gas, hydrogen) or electricity is increasingly being carried out using trenchless technologies. Trenchless methods significantly reduce the need for extensive earthworks; however, they consequently generate substantial amounts of drilling waste. This waste consists primarily of a mixture of spent drilling fluids and drill cuttings. Due to the volume and composition of the waste, along with the rapidly increasing costs of waste disposal, the trenchless technology industry faces significant economic and environmental challenges related to circular economy principles in waste management. This article presents an analysis of trenchless construction methods for underground transmission networks, with particular emphasis on the quantity and quality of the generated drilling waste. Furthermore, research is conducted to develop a cationic flocculant based on polyvinylamine, designed to eliminate the harmful coagulants in drilling waste treatment technology. Based on the conducted studies, we propose a closed-loop waste management system for trenchless technologies. The implementation of circular economy principles, along with the integration of drilling fluid treatment systems with photovoltaic panels and energy storage units, enhances the energy efficiency of drilling waste treatment processes and aligns with global trends in the adoption of renewable energy sources (RESs).

Suggested Citation

  • Aleksandra Jamrozik & Jan Ziaja & Sławomir Wysocki, 2025. "Improving Energy Efficiency in the Management of Drilling Waste from Trenchless Gas and Power Pipeline Construction Through the Implementation of Photovoltaic Panels and Circular Economy Principles," Energies, MDPI, vol. 18(4), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:788-:d:1586456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrey Lebedev & Alexey Cherepovitsyn, 2024. "Waste Management during the Production Drilling Stage in the Oil and Gas Sector: A Feasibility Study," Resources, MDPI, vol. 13(2), pages 1-30, February.
    2. Rafał Wiśniowski & Krzysztof Skrzypaszek & Tomasz Małachowski, 2020. "Selection of a Suitable Rheological Model for Drilling Fluid Using Applied Numerical Methods," Energies, MDPI, vol. 13(12), pages 1-17, June.
    3. Tomáš Chorazy & Petr Hlavínek & Jakub Raček & Katarzyna Pietrucha-Urbanik & Barbara Tchórzewska-Cieślak & Šárka Keprdová & Zdeněk Dufek, 2024. "Comparison of Trenchless and Excavation Technologies in the Restoration of a Sewage Network and Their Carbon Footprints," Resources, MDPI, vol. 13(1), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Kremieniewski, 2022. "Improving the Efficiency of Oil Recovery in Research and Development," Energies, MDPI, vol. 15(12), pages 1-7, June.
    2. Marcin Kremieniewski & Miłosz Kędzierski & Sławomir Błaż, 2021. "Increasing the Efficiency of Sealing the Borehole in Terms of Spacer Pumping Time," Energies, MDPI, vol. 14(20), pages 1-11, October.
    3. Stanisław Stryczek & Andrzej Gonet & Marcin Kremieniewski & Tomasz Kowalski, 2023. "Forecasting Strength Parameters of Hardened Geopolymer Slurries Applied to Seal Casing Columns in Boreholes," Energies, MDPI, vol. 16(11), pages 1-16, May.
    4. Rafał Wiśniowski & Grzegorz Orłowicz, 2022. "Theory of the Vom Berg Rheological Model and Its Use in Cloud-Native Application," Energies, MDPI, vol. 15(12), pages 1-13, June.
    5. Vladimir Lebedev & Andrey Deev & Konstantin Deev, 2024. "Method for Calculating Heat Transfer in a Heat Accumulator Using a Phase Change Material with Intensification Due to Longitudinal Fins," Energies, MDPI, vol. 17(21), pages 1-41, October.
    6. Marcin Kremieniewski & Rafał Wiśniowski & Stanisław Stryczek & Paweł Łopata, 2021. "Comparison of Efficient Ways of Mud Cake Removal from Casing Surface with Traditional and New Agents," Energies, MDPI, vol. 14(12), pages 1-13, June.
    7. Marcin Kremieniewski & Sławomir Błaż & Stanisław Stryczek & Rafał Wiśniowski & Andrzej Gonet, 2021. "Effect of Cleaning the Annular Space on the Adhesion of the Cement Sheath to the Rock," Energies, MDPI, vol. 14(16), pages 1-15, August.
    8. Marcin Kremieniewski, 2021. "Hybrid Washer Fluid for Primary Cementing," Energies, MDPI, vol. 14(5), pages 1-11, February.
    9. Tianle Liu & Ekaterina Leusheva & Valentin Morenov & Lixia Li & Guosheng Jiang & Changliang Fang & Ling Zhang & Shaojun Zheng & Yinfei Yu, 2020. "Influence of Polymer Reagents in the Drilling Fluids on the Efficiency of Deviated and Horizontal Wells Drilling," Energies, MDPI, vol. 13(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:788-:d:1586456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.