IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p516-d1574490.html
   My bibliography  Save this article

Research on Short-Term Load Forecasting of LSTM Regional Power Grid Based on Multi-Source Parameter Coupling

Author

Listed:
  • Bo Li

    (Electric Power Science Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650217, China)

  • Yaohua Liao

    (Electric Power Science Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650217, China)

  • Siyang Liu

    (Electric Power Science Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650217, China)

  • Chao Liu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Zhensheng Wu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

Abstract

Regional power grid load has strong periodicity and randomness, and its load characteristics are affected by many factors. Traditional short-term power load-forecasting methods have certain limitations in accuracy and stability, especially when dealing with complex weather and voltage changes. To improve the prediction accuracy, this paper proposes a short-term power load-forecasting model of a regional power grid based on multi-source parameter coupling with a long short-term memory neural network (LSTM) and adopts an improved particle swarm optimization (IPSO) algorithm to optimize the LSTM network. Firstly, load characteristics under different time dimensions were analyzed, combined with meteorological factors such as daily maximum temperature, minimum temperature, rainfall, air humidity, and historical load data, multi-source data were coupled, and date types were quantified by independent thermal coding technology to ensure a reasonable model input data set. Different from traditional methods, this paper introduces real-time coupling data of intensive sensing, which makes the model more sensitive to capture the subtle characteristics of load changes. In order to further optimize the performance of the LSTM model, the IPSO algorithm, and linear difference decreasing inertia weight are introduced to improve the global optimization ability and convergence speed of the PSO algorithm and reduce the risk of local optimal solutions. Finally, the accuracy of the model is verified by the measured data of dense sensing in a regional power grid in northern China. The calculation results show that the prediction model based on multi-source parameter coupling has higher accuracy and stability in short-term load forecasting. Compared with traditional forecasting methods, the mean relative error (MAPE), the root mean square error (RMSE), and the mean absolute error (MAE) are reduced by 1.8149%, 154.0884, and 130.6769, respectively. In the typical day prediction of different seasons, the model can keep the relative error of more than 90% sampling points below 2%. The average relative error is basically less than 1%. The model proposed in this paper shows higher accuracy and stronger practical application potential compared with traditional forecasting methods, especially in voltage monitoring and power grid dispatching.

Suggested Citation

  • Bo Li & Yaohua Liao & Siyang Liu & Chao Liu & Zhensheng Wu, 2025. "Research on Short-Term Load Forecasting of LSTM Regional Power Grid Based on Multi-Source Parameter Coupling," Energies, MDPI, vol. 18(3), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:516-:d:1574490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Yi & Niu, Dongxiao & Hong, Wei-Chiang, 2019. "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, Elsevier, vol. 166(C), pages 653-663.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    2. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    3. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    4. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Wei Ding & Xuguang Zhao & Weigao Meng & Haichao Wang, 2022. "Smart Evaluation of Sustainability of Photovoltaic Projects in the Context of Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    6. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    7. Nebojsa Bacanin & Catalin Stoean & Miodrag Zivkovic & Miomir Rakic & Roma Strulak-Wójcikiewicz & Ruxandra Stoean, 2023. "On the Benefits of Using Metaheuristics in the Hyperparameter Tuning of Deep Learning Models for Energy Load Forecasting," Energies, MDPI, vol. 16(3), pages 1-21, February.
    8. Dai, Yeming & Yang, Xinyu & Leng, Mingming, 2022. "Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    9. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    10. Yi Liang & Haichao Wang, 2021. "Using Improved SPA and ICS-LSSVM for Sustainability Assessment of PV Industry along the Belt and Road," Energies, MDPI, vol. 14(12), pages 1-19, June.
    11. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    12. Yanhua Chang & Yi Liang, 2023. "Intelligent Risk Assessment of Ecological Agriculture Projects from a Vision of Low Carbon," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    13. Fan, Jingmin & Zhong, Mingwei & Guan, Yuanpeng & Yi, Siqi & Xu, Cancheng & Zhai, Yanpeng & Zhou, Yongwang, 2024. "An online long-term load forecasting method: Hierarchical highway network based on crisscross feature collaboration," Energy, Elsevier, vol. 299(C).
    14. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    15. Li, Peng & Ji, Jie & Ji, Haoran & Song, Guanyu & Wang, Chengshan & Wu, Jianzhong, 2020. "Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks," Energy, Elsevier, vol. 195(C).
    16. Yi Liang & Yingying Fan & Yongfang Peng & Haigang An, 2022. "Smart Grid Project Benefit Evaluation Based on a Hybrid Intelligent Model," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    17. Malekizadeh, M. & Karami, H. & Karimi, M. & Moshari, A. & Sanjari, M.J., 2020. "Short-term load forecast using ensemble neuro-fuzzy model," Energy, Elsevier, vol. 196(C).
    18. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    19. Wang, Jianzhou & Gao, Jialu & Wei, Danxiang, 2022. "Electric load prediction based on a novel combined interval forecasting system," Applied Energy, Elsevier, vol. 322(C).
    20. Amedeo Buonanno & Martina Caliano & Antonino Pontecorvo & Gianluca Sforza & Maria Valenti & Giorgio Graditi, 2022. "Global vs. Local Models for Short-Term Electricity Demand Prediction in a Residential/Lodging Scenario," Energies, MDPI, vol. 15(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:516-:d:1574490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.