IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p370-d1568562.html
   My bibliography  Save this article

The Generation Load Aggregator Participates in the Electricity Purchase and Sale Strategy of the Electric Energy–Peak Shaving Market

Author

Listed:
  • Haonan Zhang

    (School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China)

  • Youwen Tian

    (School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China)

  • Wei He

    (School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China)

  • Zhining Liang

    (School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China)

  • Zihao Zhang

    (Huaneng Thermal Power Co., Ltd., Dalian 116033, China)

  • Nannan Zhang

    (School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China)

Abstract

To facilitate the participation of small- and medium-sized customer-side resources into the electricity market, with the aim of optimizing the allocation of electricity resources, this paper proposes the participation of small- and medium-sized adjustable resources in the electricity market in the form of generation load aggregators. Considering the coupling role of the electric energy market and the peaking auxiliary service market, a joint model of generation load aggregators that participate in the electric energy–peak shaving market is constructed. Comparing the model solution with those of the control group, the peak-to-valley difference of 10.5 MW is much lower than that of the control group, which is 16.54 MW. Compared with the control group, the profit was increased by USD 2.6 thousand, or 6.06%. It can be seen that the model proposed in this paper can reduce the peak and valley pressure as well as the control pressure of the power system from the load side. By participating in the peak shaving market, the transferable loads within the generation load aggregators can give full play to its adjustable characteristics, thereby reducing the cost of electricity consumption and increasing its profit, and providing a certain theoretical basis for the electricity market management to design the rules for adjustable users to enter the electricity market.

Suggested Citation

  • Haonan Zhang & Youwen Tian & Wei He & Zhining Liang & Zihao Zhang & Nannan Zhang, 2025. "The Generation Load Aggregator Participates in the Electricity Purchase and Sale Strategy of the Electric Energy–Peak Shaving Market," Energies, MDPI, vol. 18(2), pages 1-31, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:370-:d:1568562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yubo Wang & Weiqing Sun, 2024. "A Two-Stage Robust Pricing Strategy for Electric Vehicle Aggregators Considering Dual Uncertainty in Electricity Demand and Real-Time Electricity Prices," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    2. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    3. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theo Arentze & Tao Feng & Harry Timmermans & Jops Robroeks, 2012. "Context-dependent influence of road attributes and pricing policies on route choice behavior of truck drivers: results of a conjoint choice experiment," Transportation, Springer, vol. 39(6), pages 1173-1188, November.
    2. Czajkowski, Mikołaj & Zagórska, Katarzyna & Letki, Natalia & Tryjanowski, Piotr & Wąs, Adam, 2021. "Drivers of farmers’ willingness to adopt extensive farming practices in a globally important bird area," Land Use Policy, Elsevier, vol. 107(C).
    3. Venkatesh Shankar & Pablo Azar & Matthew Fuller, 2008. "—: A Multicategory Brand Equity Model and Its Application at Allstate," Marketing Science, INFORMS, vol. 27(4), pages 567-584, 07-08.
    4. Kruse, Tobias & Atkinson, Giles, 2022. "Understanding public support for international climate adaptation payments: Evidence from a choice experiment," Ecological Economics, Elsevier, vol. 194(C).
    5. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    6. Jianhua Wang & Jiaye Ge & Yuting Ma, 2018. "Urban Chinese Consumers’ Willingness to Pay for Pork with Certified Labels: A Discrete Choice Experiment," Sustainability, MDPI, vol. 10(3), pages 1-14, February.
    7. Illichmann, R. & Abdulai, A., 2014. "Analysis of Consumer Preferences and Wilingness-To-Pay for Organic Food Products in Germany," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 49, March.
    8. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    9. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    10. Scaccia, Luisa & Marcucci, Edoardo & Gatta, Valerio, 2023. "Prediction and confidence intervals of willingness-to-pay for mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 54-78.
    11. Non, Arjan & Rohde, Ingrid & de Grip, Andries & Dohmen, Thomas, 2022. "Mission of the company, prosocial attitudes and job preferences: A discrete choice experiment," Labour Economics, Elsevier, vol. 74(C).
    12. D Rigby & M Burton, 2003. "Capturing Preference Heterogeneity in Stated Choice Models: A Random Parameter Logit Model of the Demand for GM Food," Economics Discussion Paper Series 0319, Economics, The University of Manchester.
    13. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    14. Faure, Corinne & Guetlein, Marie-Charlotte & Schleich, Joachim & Tu, Gengyang & Whitmarsh, Lorraine & Whittle, Colin, 2022. "Household acceptability of energy efficiency policies in the European Union: Policy characteristics trade-offs and the role of trust in government and environmental identity," Ecological Economics, Elsevier, vol. 192(C).
    15. Meredith Fowlie, 2010. "Emissions Trading, Electricity Restructuring, and Investment in Pollution Abatement," American Economic Review, American Economic Association, vol. 100(3), pages 837-869, June.
    16. Mohammed H. Alemu & Søren Bøye Olsen & Suzanne E. Vedel & John Kinyuru & Kennedy O. Pambo, 2016. "Integrating sensory evaluations in incentivized discrete choice experiments to assess consumer demand for cricket flour buns in Kenya," IFRO Working Paper 2016/02, University of Copenhagen, Department of Food and Resource Economics.
    17. de Ayala, Amaia & Hoyos, David & Mariel, Petr, 2015. "Suitability of discrete choice experiments for landscape management under the European Landscape Convention," Journal of Forest Economics, Elsevier, vol. 21(2), pages 79-96.
    18. Barros, Carlos Pestana & Ferreira, Candida & Williams, Jonathan, 2007. "Analysing the determinants of performance of best and worst European banks: A mixed logit approach," Journal of Banking & Finance, Elsevier, vol. 31(7), pages 2189-2203, July.
    19. Faulques, Martin & Bonnet, Jean & Bourdin, Sébastien & Juge, Marine & Pigeon, Jonas & Richard, Charlotte, 2022. "Generational effect and territorial distributive justice, the two main drivers for willingness to pay for renewable energies," Energy Policy, Elsevier, vol. 168(C).
    20. Ting Li & Robert J. Kauffman & Eric van Heck & Peter Vervest & Benedict G. C. Dellaert, 2014. "Consumer Informedness and Firm Information Strategy," Information Systems Research, INFORMS, vol. 25(2), pages 345-363, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:370-:d:1568562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.