Dynamic Spatial–Temporal Graph Neural Network for Cooling Capacity Prediction in HVDC Systems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
- Pang, Yong & Hu, Zhengguo & Zhang, Shuai & Guo, Guanchen & Song, Xueguan & Kan, Ziyun, 2024. "Co-design of an unmanned cable shovel for structural and control integrated optimization: A highly heterogeneous constrained multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 376(PB).
- Fabian Scheller & Frauke Wiese & Jann Michael Weinand & Dominik Franjo Dominkovi'c & Russell McKenna, 2021. "An expert survey to assess the current status and future challenges of energy system analysis," Papers 2106.15518, arXiv.org.
- Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
- Andrew Chapman, 2023. "Enhancing Survey Efficiency and Predictive Ability in Energy System Design through Machine Learning: A Workflow-Based Approach for Improved Outcomes," Energies, MDPI, vol. 16(13), pages 1-16, June.
- Balderrama, Sergio & Lombardi, Francesco & Stevanato, Nicolo & Peña, Gabriela & Colombo, Emanuela & Quoilin, Sylvain, 2021. "Surrogate models for rural energy planning: Application to Bolivian lowlands isolated communities," Energy, Elsevier, vol. 232(C).
- Ferrara, Maria & Della Santa, Francesco & Bilardo, Matteo & De Gregorio, Alessandro & Mastropietro, Antonio & Fugacci, Ulderico & Vaccarino, Francesco & Fabrizio, Enrico, 2021. "Design optimization of renewable energy systems for NZEBs based on deep residual learning," Renewable Energy, Elsevier, vol. 176(C), pages 590-605.
- García Kerdan, Iván & Morillón Gálvez, David, 2020. "Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building," Applied Energy, Elsevier, vol. 280(C).
- Zhang, Xiaohai & Ramírez-Mendiola, José Luis & Li, Mingtao & Guo, Liejin, 2022. "Electricity consumption pattern analysis beyond traditional clustering methods: A novel self-adapting semi-supervised clustering method and application case study," Applied Energy, Elsevier, vol. 308(C).
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2020. "Introducing reinforcement learning to the energy system design process," Applied Energy, Elsevier, vol. 262(C).
- Prina, Matteo Giacomo & Dallapiccola, Mattia & Moser, David & Sparber, Wolfram, 2024. "Machine learning as a surrogate model for EnergyPLAN: Speeding up energy system optimization at the country level," Energy, Elsevier, vol. 307(C).
More about this item
Keywords
cooling capacity prediction; graph neural networks; temporal dynamics; industrial applications; predictive maintenance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:313-:d:1565367. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.