IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p313-d1565367.html
   My bibliography  Save this article

Dynamic Spatial–Temporal Graph Neural Network for Cooling Capacity Prediction in HVDC Systems

Author

Listed:
  • Hao Sun

    (Kunming Bureau of EHV Transmission Company, Kunming 650217, China)

  • Shaosen Li

    (Kunming Bureau of EHV Transmission Company, Kunming 650217, China)

  • Jianxiang Huang

    (Kunming Bureau of EHV Transmission Company, Kunming 650217, China)

  • Hao Li

    (Kunming Bureau of EHV Transmission Company, Kunming 650217, China)

  • Guanxin Jing

    (Kunming Bureau of EHV Transmission Company, Kunming 650217, China)

  • Ye Tao

    (Kunming Bureau of EHV Transmission Company, Kunming 650217, China)

  • Xincui Tian

    (Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China)

Abstract

Predicting the cooling capacity of converter valves is crucial for maintaining the stability and efficiency of high-voltage direct current (HVDC) systems. This task involves handling complex, multi-dimensional time-series data with strong inter-variable dependencies and temporal dynamics. Traditional machine learning methods, while effective in static scenarios, struggle to capture these dependencies, and existing deep learning models often lack the ability to jointly model spatial and temporal relationships. To address these challenges, we propose a novel framework that integrates Graph Neural Networks (GNNs) with temporal dynamics. The GNN component captures spatial dependencies by representing the data as a graph, where nodes correspond to system variables, and edges encode their relationships. Temporal dependencies are modeled using temporal convolutional layers and recurrent neural networks (RNNs), enabling the framework to learn both short-term variations and long-term trends. Additionally, a graph attention mechanism dynamically adjusts the importance of variable relationships, improving prediction accuracy and interoperability. The proposed method demonstrates superior performance over traditional machine learning and deep learning baselines on real-world cooling system data. These results validate the effectiveness of the framework for industrial applications such as cooling system monitoring and predictive maintenance.

Suggested Citation

  • Hao Sun & Shaosen Li & Jianxiang Huang & Hao Li & Guanxin Jing & Ye Tao & Xincui Tian, 2025. "Dynamic Spatial–Temporal Graph Neural Network for Cooling Capacity Prediction in HVDC Systems," Energies, MDPI, vol. 18(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:313-:d:1565367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/313/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/313/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    2. Pang, Yong & Hu, Zhengguo & Zhang, Shuai & Guo, Guanchen & Song, Xueguan & Kan, Ziyun, 2024. "Co-design of an unmanned cable shovel for structural and control integrated optimization: A highly heterogeneous constrained multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 376(PB).
    3. Fabian Scheller & Frauke Wiese & Jann Michael Weinand & Dominik Franjo Dominkovi'c & Russell McKenna, 2021. "An expert survey to assess the current status and future challenges of energy system analysis," Papers 2106.15518, arXiv.org.
    4. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    5. Andrew Chapman, 2023. "Enhancing Survey Efficiency and Predictive Ability in Energy System Design through Machine Learning: A Workflow-Based Approach for Improved Outcomes," Energies, MDPI, vol. 16(13), pages 1-16, June.
    6. Balderrama, Sergio & Lombardi, Francesco & Stevanato, Nicolo & Peña, Gabriela & Colombo, Emanuela & Quoilin, Sylvain, 2021. "Surrogate models for rural energy planning: Application to Bolivian lowlands isolated communities," Energy, Elsevier, vol. 232(C).
    7. Ferrara, Maria & Della Santa, Francesco & Bilardo, Matteo & De Gregorio, Alessandro & Mastropietro, Antonio & Fugacci, Ulderico & Vaccarino, Francesco & Fabrizio, Enrico, 2021. "Design optimization of renewable energy systems for NZEBs based on deep residual learning," Renewable Energy, Elsevier, vol. 176(C), pages 590-605.
    8. García Kerdan, Iván & Morillón Gálvez, David, 2020. "Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building," Applied Energy, Elsevier, vol. 280(C).
    9. Zhang, Xiaohai & Ramírez-Mendiola, José Luis & Li, Mingtao & Guo, Liejin, 2022. "Electricity consumption pattern analysis beyond traditional clustering methods: A novel self-adapting semi-supervised clustering method and application case study," Applied Energy, Elsevier, vol. 308(C).
    10. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    11. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2020. "Introducing reinforcement learning to the energy system design process," Applied Energy, Elsevier, vol. 262(C).
    12. Prina, Matteo Giacomo & Dallapiccola, Mattia & Moser, David & Sparber, Wolfram, 2024. "Machine learning as a surrogate model for EnergyPLAN: Speeding up energy system optimization at the country level," Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:313-:d:1565367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.