IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p298-d1564726.html
   My bibliography  Save this article

Experimental Study on a Solar Energy–Multi-Energy Complementary Heating System for Independent Dwellings in Southern Xinjiang

Author

Listed:
  • Jie Li

    (College of Water Resources and Construction Engineering, Shihezi University, Shihezi 832000, China)

  • Qian Yang

    (College of Water Resources and Construction Engineering, Shihezi University, Shihezi 832000, China)

  • Hong Chen

    (College of Water Resources and Construction Engineering, Shihezi University, Shihezi 832000, China
    School of Architecture, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Sihui Huang

    (College of Water Resources and Construction Engineering, Shihezi University, Shihezi 832000, China)

Abstract

This study proposes a multi-energy complementary heating system that uses solar energy combined with biomass energy as the main heat source, with electricity as an auxiliary heat source. The system aims to tackle the low efficiency, high energy consumption, and pollution associated with traditional heating methods in rural southern Xinjiang, enhancing performance and productivity. It is designed to operate in five modes based on the region’s climate and building heat load requirements. An experimental platform was set up in eight rural households in Tumushuk City, Xinjiang, where winter heating tests were conducted. The goal of this study was to analyze the economic and environmental benefits of the system. The results showed that the energy utilization efficiencies of the five modes were 56.84%, 74.34%, 70.1%, 63.13%, and 59.68%. The corresponding CO 2 emissions were 3.56 kg/d, 45.09 kg/d, 105.75 kg/d, 30.97 kg/d, and 76.79 kg/d. The environmental and economic costs for each mode were 0.0493 USD/d, 0.6398 USD/d, 1.5029 USD/d, 0.4384 USD/d, and 1.0905 USD/d. It is clear that as an auxiliary heat source, biomass energy is more beneficial than electricity. All five modes maintained indoor temperatures of 18 °C or higher, meeting winter heating needs in cold regions. The results of this study provide important data support for the promotion and application of solar and biomass heating systems in the rural areas of southern Xinjiang and also provide valuable references for solving the problem of decentralized heating in rural areas.

Suggested Citation

  • Jie Li & Qian Yang & Hong Chen & Sihui Huang, 2025. "Experimental Study on a Solar Energy–Multi-Energy Complementary Heating System for Independent Dwellings in Southern Xinjiang," Energies, MDPI, vol. 18(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:298-:d:1564726
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moosavian, Seyed Farhan & Borzuei, Daryoosh & Ahmadi, Abolfazl, 2021. "Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 301-320.
    2. Caliskan, Hakan, 2017. "Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 488-492.
    3. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2024. "Analyzing the influence of feedstock selection in pyrolysis on aviation gas turbine engines: A study on performance, combustion efficiency, and emission profiles," Energy, Elsevier, vol. 306(C).
    4. Don Rukmal Liyanage & Kasun Hewage & Hirushie Karunathilake & Gyan Chhipi-Shrestha & Rehan Sadiq, 2021. "Carbon Capture Systems for Building-Level Heating Systems—A Socio-Economic and Environmental Evaluation," Sustainability, MDPI, vol. 13(19), pages 1-30, September.
    5. Aghbashlo, Mortaza & Tabatabaei, Meisam & Khalife, Esmail & Roodbar Shojaei, Taha & Dadak, Ali, 2018. "Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide," Energy, Elsevier, vol. 149(C), pages 967-978.
    6. Martinopoulos, Georgios & Papakostas, Konstantinos T. & Papadopoulos, Agis M., 2018. "A comparative review of heating systems in EU countries, based on efficiency and fuel cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 687-699.
    7. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    8. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    9. Akdeniz, Halil Yalcin & Balli, Ozgur, 2022. "Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft," Energy, Elsevier, vol. 238(PA).
    10. Arunkumar, T. & Lim, Hyeong Woo & Lee, Sang Joon, 2022. "A review on efficiently integrated passive distillation systems for active solar steam evaporation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:298-:d:1564726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.