IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p8-d1551222.html
   My bibliography  Save this article

Physics-Informed Neural Networks for Heat Pump Load Prediction

Author

Listed:
  • Viorica Rozina Chifu

    (Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania)

  • Tudor Cioara

    (Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania)

  • Cristina Bianca Pop

    (Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania)

  • Ionut Anghel

    (Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania)

  • Andrei Pelle

    (Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania)

Abstract

Heat pumps are promising solutions for managing the increasing heating demand of residential houses, reducing the environmental impact when used with renewable energy. Accurate heat load predictions allow the heat pump to operate at the most efficient settings, maintaining comfortable temperatures while reducing excess energy use and lowering operating costs. Data-driven prediction solutions may have difficulty capturing the dynamics and nonlinearities of the thermodynamics involved. The physics-informed models combine the monitored observed data with theoretical knowledge of heat pumps and directly integrate physical constraints, allowing for better generalization and reducing the dependence on large volumes of data. However, they require detailed knowledge of the system topology and refrigerant parameters, which increases the model complexity. Therefore, in this paper, we propose a physics-informed neural network for predicting the heat load of heat pumps that integrates thermodynamics directly into the loss function of the neural network. We model the heat load as a function of the input variables, including the inlet temperature, outlet temperature, and water flow rate. We integrate the function during model training to reduce the model complexity. Our approach increases the accuracy of the predictions compared with data-driven models and generates prediction results that are consistent with the actual physical behavior of the heat pump. The results show superior prediction accuracy, with a 7.49% reduction in the RMSE and a 6.49% decrease in the MAPE, while the R 2 value shows an increase of 0.02%.

Suggested Citation

  • Viorica Rozina Chifu & Tudor Cioara & Cristina Bianca Pop & Ionut Anghel & Andrei Pelle, 2024. "Physics-Informed Neural Networks for Heat Pump Load Prediction," Energies, MDPI, vol. 18(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:8-:d:1551222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Kwon Hwang & Patrick Nzivugira Duhirwe & Geun Young Yun & Sukho Lee & Hyeongjoon Seo & Inhan Kim & Mat Santamouris, 2020. "A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    2. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    3. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    2. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    3. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    4. Taboga, Vincent & Gehring, Clement & Cam, Mathieu Le & Dagdougui, Hanane & Bacon, Pierre-Luc, 2024. "Neural differential equations for temperature control in buildings under demand response programs," Applied Energy, Elsevier, vol. 368(C).
    5. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    6. Chen, Dong & Chui, Chee-Kong & Lee, Poh Seng, 2025. "Adaptive physically consistent neural networks for data center thermal dynamics modeling," Applied Energy, Elsevier, vol. 377(PD).
    7. Murilo Eduardo Casteroba Bento, 2024. "Load Margin Assessment of Power Systems Using Physics-Informed Neural Network with Optimized Parameters," Energies, MDPI, vol. 17(7), pages 1-20, March.
    8. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    9. Mukun Yuan & Jian Liu & Zheyuan Chen & Qingda Guo & Mingzhe Yuan & Jian Li & Guangping Yu, 2024. "Predicting Energy Consumption for Hybrid Energy Systems toward Sustainable Manufacturing: A Physics-Informed Approach Using Pi-MMoE," Sustainability, MDPI, vol. 16(17), pages 1-27, August.
    10. Fredrik Skaug Fadnes & Mohsen Assadi, 2024. "Utilizing Wastewater Tunnels as Thermal Reservoirs for Heat Pumps in Smart Cities," Energies, MDPI, vol. 17(19), pages 1-35, September.
    11. Xiao, Tianqi & You, Fengqi, 2024. "Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities," Applied Energy, Elsevier, vol. 353(PB).
    12. Guo, Fangzhou & Li, Ao & Yue, Bao & Xiao, Ziwei & Xiao, Fu & Yan, Rui & Li, Anbang & Lv, Yan & Su, Bing, 2024. "Improving the out-of-sample generalization ability of data-driven chiller performance models using physics-guided neural network," Applied Energy, Elsevier, vol. 354(PA).
    13. Zhang, Qingang & Zeng, Wei & Lin, Qinjie & Chng, Chin-Boon & Chui, Chee-Kong & Lee, Poh-Seng, 2023. "Deep reinforcement learning towards real-world dynamic thermal management of data centers," Applied Energy, Elsevier, vol. 333(C).
    14. Massimiliano Manfren & Karla M. Gonzalez-Carreon & Patrick A. B. James, 2024. "Interpretable Data-Driven Methods for Building Energy Modelling—A Review of Critical Connections and Gaps," Energies, MDPI, vol. 17(4), pages 1-22, February.
    15. Guo, Yanhua & Wang, Ningbo & Shao, Shuangquan & Huang, Congqi & Zhang, Zhentao & Li, Xiaoqiong & Wang, Youdong, 2024. "A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    16. Rickard Brännvall & Jonas Gustafsson & Fredrik Sandin, 2023. "Modular and Transferable Machine Learning for Heat Management and Reuse in Edge Data Centers," Energies, MDPI, vol. 16(5), pages 1-24, February.
    17. Hu, Guoqing & You, Fengqi, 2023. "An AI framework integrating physics-informed neural network with predictive control for energy-efficient food production in the built environment," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:8-:d:1551222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.