IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p113-d1557168.html
   My bibliography  Save this article

Thermodynamic Analysis and Optimization of Mobile Nuclear System

Author

Listed:
  • Guobin Jia

    (Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
    Zhongke Wuwei New Energy Research Institute, Wuwei 733000, China)

  • Guifeng Zhu

    (Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yuwen Ma

    (Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jingen Chen

    (Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yang Zou

    (Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

This paper develops a system–component integrated design method for a closed Brayton cycle in a nuclear-powered emergency power vehicle, optimizing the thermodynamic performance by varying the maximum operating temperature and pressure, minimum operating temperature, helium–xenon gas molar mass, and PCHE parameters to maximize the specific power and thermal efficiency. The key results are as follows: (1) The maximum allowable pressure decreases with the temperature, and the specific power increases for both the SRC and the IRC without considering the ultimate heat sink. (2) The PCHE weight is minimized at a helium–xenon gas molar mass of 25 g/mol, while the turbomachine’s weight decreases with an increasing molar mass, leading to an overall system weight reduction. (3) The thermal efficiency decreases with lower minimum operating temperatures, optimizing at 350 K due to a precooler weight increase. (4) The thermal efficiency plateaus after a certain number of PCHE channels, with the recuperator effectiveness significantly impacting the performance. (5) The SRC, with a specific power and a thermal efficiency of 194.38 kW/kg and 39.19%, is preferred over the IRC for the SIMONS due to its mobility and rapid deployment. This study offers a comprehensive analysis for optimizing closed Brayton cycle systems in emergency power applications.

Suggested Citation

  • Guobin Jia & Guifeng Zhu & Yuwen Ma & Jingen Chen & Yang Zou, 2024. "Thermodynamic Analysis and Optimization of Mobile Nuclear System," Energies, MDPI, vol. 18(1), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:113-:d:1557168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Yuan & Xie, Gongnan & Hooman, Kamel, 2022. "Review of printed circuit heat exchangers and its applications in solar thermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    2. Cheng, Yang & Li, Yingxiao & Wang, Jinghan & Tam, Lapmou & Chen, Yitung & Wang, Qiuwang & Ma, Ting, 2023. "Multi-objective optimization of printed circuit heat exchanger used for hydrogen cooler by exergoeconomic method," Energy, Elsevier, vol. 262(PA).
    3. Li, Qian & Zhan, Qi & Yu, Shipeng & Sun, Jianchuang & Cai, Weihua, 2023. "Study on thermal-hydraulic performance of printed circuit heat exchangers with supercritical methane based on machine learning methods," Energy, Elsevier, vol. 282(C).
    4. Chang, Hongliang & Han, Zeran & Li, Xionghui & Ma, Ting & Wang, Qiuwang, 2022. "Experimental investigation on heat transfer performance based on average thermal-resistance ratio for supercritical carbon dioxide in asymmetric airfoil-fin printed circuit heat exchanger," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:113-:d:1557168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.