IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2106-d1384985.html
   My bibliography  Save this article

Research on Optimal Operation of Power Generation and Consumption for Enterprises with Captive Power Plants Participating in Power Grid Supply–Demand Regulation

Author

Listed:
  • Hangming Liu

    (College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

  • Huirong Zhao

    (College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

  • Jincheng Yang

    (Marketing Service Center, State Grid Xinjiang Electric Power Co., Ltd., Urumqi 830013, China)

  • Daogang Peng

    (College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

Abstract

Wind and solar power curtailment and the difficulty of peak regulation are issues that urgently need to be addressed in the process of China’s new electric power system. Enterprises with captive power plants (ECPPs) are large-capacity power consumers and producers, with significant optimization and adjustment potential on both the supply and demand sides. This paper aims to promote the active participation of ECPPs in grid supply–demand regulation and proposes an optimization model for the power generation and consumption of ECPPs based on a day-ahead, intra-day two-stage dispatching model. First, targeting demand response scenarios, mathematical models for analyzing the potential of ECPPs to participate in power grid supply–demand regulation are proposed. Then, an optimization model for ECPP generation and consumption with load regulation is established, and a two-stage dispatching model is proposed to fully mobilize the regulation flexibility of ECPPs. Finally, a robust dispatching model considering price uncertainty is established based on information gap decision theory. The case results show that ECPPs can reduce the curtailment rate in a region by approximately 9%, alleviate the peak pressure of the power grid, reduce carbon emissions by 1373.55 tons, and promote low-carbon development for themselves. Meanwhile, considering price uncertainty strengthens the risk resistance capability of ECPPs and provides a basis for their willingness to participate in supply–demand regulation.

Suggested Citation

  • Hangming Liu & Huirong Zhao & Jincheng Yang & Daogang Peng, 2024. "Research on Optimal Operation of Power Generation and Consumption for Enterprises with Captive Power Plants Participating in Power Grid Supply–Demand Regulation," Energies, MDPI, vol. 17(9), pages 1-31, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2106-:d:1384985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramin, D. & Spinelli, S. & Brusaferri, A., 2018. "Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process," Applied Energy, Elsevier, vol. 225(C), pages 622-636.
    2. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    3. Yong-xiu He & Yue-xia Pang & Jie Guan, 2017. "A TOU Pricing Mechanism to Promote Renewable Energy Consumption: The Case of the Western Inner Mongolia Grid in China," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-16, September.
    4. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiayang & Wang, Qiang & Sun, Wenqiang, 2023. "Quantifying flexibility provisions of the ladle furnace refining process as cuttable loads in the iron and steel industry," Applied Energy, Elsevier, vol. 342(C).
    2. Dandan Zhu & Wenying Liu & Yang Hu & Weizhou Wang, 2018. "A Practical Load-Source Coordinative Method for Further Reducing Curtailed Wind Power in China with Energy-Intensive Loads," Energies, MDPI, vol. 11(11), pages 1-14, October.
    3. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    4. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," Applied Energy, Elsevier, vol. 278(C).
    5. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    7. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    8. Roksana Yasmin & B. M. Ruhul Amin & Rakibuzzaman Shah & Andrew Barton, 2024. "A Survey of Commercial and Industrial Demand Response Flexibility with Energy Storage Systems and Renewable Energy," Sustainability, MDPI, vol. 16(2), pages 1-41, January.
    9. Ashitosh Rajesh Varne & Simon Blouin & Baxter Lorenzo McIntosh Williams & David Denkenberger, 2024. "The Impact of Abrupt Sunlight Reduction Scenarios on Renewable Energy Production," Energies, MDPI, vol. 17(20), pages 1-16, October.
    10. Otashu, Joannah I. & Baldea, Michael, 2020. "Scheduling chemical processes for frequency regulation," Applied Energy, Elsevier, vol. 260(C).
    11. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 278.
    12. Lerch, Philipp & Scheller, Fabian & Reichelt, David G. & Menzel, Katharina & Bruckner, Thomas, 2024. "Electricity cost and CO2 savings potential for chlor-alkali electrolysis plants: Benefits of electricity price dependent demand response," Applied Energy, Elsevier, vol. 355(C).
    13. Jörn C. Richstein & Seyed Saeed Hosseinioun, 2020. "Industrial Demand Response: How Network Tariffs and Regulation Do (Not) Impact Flexibility Provision in Electricity Markets and Reserves," Discussion Papers of DIW Berlin 1853, DIW Berlin, German Institute for Economic Research.
    14. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    15. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    16. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    17. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    18. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    19. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    20. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2106-:d:1384985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.