IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1900-d1376867.html
   My bibliography  Save this article

Numerical Investigations on the Transient Aerodynamic Performance Characterization of a Multibladed Vertical Axis Wind Turbine

Author

Listed:
  • Jamie Christie

    (School of Engineering, Robert Gordon University, Aberdeen AB10 7GJ, UK)

  • Thomas Lines

    (School of Engineering, Robert Gordon University, Aberdeen AB10 7GJ, UK)

  • Dillon Simpson

    (School of Engineering, Robert Gordon University, Aberdeen AB10 7GJ, UK)

  • Taimoor Asim

    (School of Engineering, Robert Gordon University, Aberdeen AB10 7GJ, UK)

  • Muhammad Salman Siddiqui

    (Faculty of Science and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway)

  • Sheikh Zahidul Islam

    (School of Engineering, Robert Gordon University, Aberdeen AB10 7GJ, UK)

Abstract

The use of vertical axis wind turbines (VAWTs) in urban environments is on the rise due to their relatively smaller size, simpler design, lower manufacturing and maintenance costs, and above all, due to their omnidirectionality. The multibladed drag-based VAWT has been identified as a design configuration with superior aerodynamic performance. Numerous studies have been carried out in order to better understand the complex aerodynamic performance of multibladed VAWTs employing steady-state or quasi-steady numerical methods. The transient aerodynamics associated with a multibladed VAWT, especially the time–history of the power coefficient of each blade, has not been reported in the published literature. This information is important for the identification of individual blade’s orientation when producing negative torque. The current study aims to bridge this gap in the literature through real-time tracking of the rotor blade’s aerodynamic performance characteristics during one complete revolution. Numerical investigations were carried out using advanced computational fluid dynamics (CFD)-based techniques for a tip speed ratio of 0 to 1. The results indicate that transient aerodynamic characterization is 13% more accurate in predicting the power generation from the VAWT. While steady-state performance characterization indicates a negative power coefficient (Cp) at λ = 0.65, transient analysis suggests that this happens at λ = 0.75.

Suggested Citation

  • Jamie Christie & Thomas Lines & Dillon Simpson & Taimoor Asim & Muhammad Salman Siddiqui & Sheikh Zahidul Islam, 2024. "Numerical Investigations on the Transient Aerodynamic Performance Characterization of a Multibladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 17(8), pages 1-11, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1900-:d:1376867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balduzzi, Francesco & Bianchini, Alessandro & Carnevale, Ennio Antonio & Ferrari, Lorenzo & Magnani, Sandro, 2012. "Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building," Applied Energy, Elsevier, vol. 97(C), pages 921-929.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Wang & Li Zou & Aimin Wang & Peidong Zhao & Yichen Jiang, 2020. "Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines," Energies, MDPI, vol. 13(17), pages 1-18, August.
    2. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    3. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    4. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2015. "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, Elsevier, vol. 90(P1), pages 784-795.
    5. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    7. Hong, Taehoon & Koo, Choongwan & Kwak, Taehyun, 2013. "Framework for the implementation of a new renewable energy system in an educational facility," Applied Energy, Elsevier, vol. 103(C), pages 539-551.
    8. Zhang, Yanfeng & Li, Qing'an & Zhu, Xinyu & Song, Xiaowen & Cai, Chang & Zhou, Teng & Kamada, Yasunari & Maeda, Takao & Wang, Ye & Guo, Zhiping, 2022. "Effect of the bionic blade on the flow field of a straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 258(C).
    9. Acarer, Sercan & Uyulan, Çağlar & Karadeniz, Ziya Haktan, 2020. "Optimization of radial inflow wind turbines for urban wind energy harvesting," Energy, Elsevier, vol. 202(C).
    10. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    11. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    12. Hidetaka Senga & Hiroki Umemoto & Hiromichi Akimoto, 2022. "Verification of Tilt Effect on the Performance and Wake of a Vertical Axis Wind Turbine by Lifting Line Theory Simulation," Energies, MDPI, vol. 15(19), pages 1-17, September.
    13. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    14. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    15. Danao, Louis Angelo & Eboibi, Okeoghene & Howell, Robert, 2013. "An experimental investigation into the influence of unsteady wind on the performance of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 107(C), pages 403-411.
    16. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    17. Peng, H.Y. & Lam, H.F., 2016. "Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations," Energy, Elsevier, vol. 109(C), pages 557-568.
    18. Li, Q.S. & Shu, Z.R. & Chen, F.B., 2016. "Performance assessment of tall building-integrated wind turbines for power generation," Applied Energy, Elsevier, vol. 165(C), pages 777-788.
    19. Giulio Vita & Anina Šarkić-Glumac & Hassan Hemida & Simone Salvadori & Charalampos Baniotopoulos, 2020. "On the Wind Energy Resource above High-Rise Buildings," Energies, MDPI, vol. 13(14), pages 1-23, July.
    20. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1900-:d:1376867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.