IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1658-d1367332.html
   My bibliography  Save this article

Multi-Wind Turbine Wind Speed Prediction Based on Weighted Diffusion Graph Convolution and Gated Attention Network

Author

Listed:
  • Yakai Qiao

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

  • Hui Chen

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

  • Bo Fu

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

Abstract

The complex environmental impact makes it difficult to predict wind speed with high precision for multiple wind turbines. Most existing research methods model the temporal dependence of wind speeds, ignoring the spatial correlation between wind turbines. In this paper, we propose a multi-wind turbine wind speed prediction model based on Weighted Diffusion Graph Convolution and Gated Attention Network (WDGCGAN). To address the strong nonlinear correlation problem among multiple wind turbines, we use the maximal information coefficient (MIC) method to calculate the correlation weights between wind turbines and construct a weighted graph for multiple wind turbines. Next, by applying Diffusion Graph Convolution (DGC) transformation to the weight matrix of the weighted graph, we obtain the spatial graph diffusion matrix of the wind farm to aggregate the high-order neighborhood information of the graph nodes. Finally, by combining the DGC with the gated attention recurrent unit (GAU), we establish a spatio-temporal model for multi-turbine wind speed prediction. Experiments on the wind farm data in Massachusetts show that the proposed method can effectively aggregate the spatio-temporal information of wind turbine nodes and improve the prediction accuracy of multiple wind speeds. In the 1h prediction task, the average RMSE of the proposed model is 28% and 33.1% lower than that of the Long Short-Term Memory Network (LSTM) and Convolutional Neural Network (CNN), respectively.

Suggested Citation

  • Yakai Qiao & Hui Chen & Bo Fu, 2024. "Multi-Wind Turbine Wind Speed Prediction Based on Weighted Diffusion Graph Convolution and Gated Attention Network," Energies, MDPI, vol. 17(7), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1658-:d:1367332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Exizidis, Lazaros & Kazempour, S. Jalal & Pinson, Pierre & de Greve, Zacharie & Vallée, François, 2016. "Sharing wind power forecasts in electricity markets: A numerical analysis," Applied Energy, Elsevier, vol. 176(C), pages 65-73.
    2. Jing Lu & Hafiz Mutee-ur-Rehman & Saima Nazeer & Xuemei An & Tabasam Rashid, 2022. "The Edge-Weighted Graph Entropy Using Redefined Zagreb Indices," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, March.
    3. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    2. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    3. Yıldıran, Uğur & Kayahan, İsmail, 2018. "Risk-averse stochastic model predictive control-based real-time operation method for a wind energy generation system supported by a pumped hydro storage unit," Applied Energy, Elsevier, vol. 226(C), pages 631-643.
    4. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    5. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    6. Yanan Xue & Jinliang Yin & Xinhao Hou, 2024. "Short-Term Wind Power Prediction Based on Multi-Feature Domain Learning," Energies, MDPI, vol. 17(13), pages 1-25, July.
    7. Liu, Shuwei & Tian, Jianyan & Ji, Zhengxiong & Dai, Yuanyuan & Guo, Hengkuan & Yang, Shengqiang, 2024. "Research on multi-digital twin and its application in wind power forecasting," Energy, Elsevier, vol. 292(C).
    8. Vaia I. Kontopoulou & Athanasios D. Panagopoulos & Ioannis Kakkos & George K. Matsopoulos, 2023. "A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks," Future Internet, MDPI, vol. 15(8), pages 1-31, July.
    9. Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
    10. Sareen, Karan & Panigrahi, Bijaya Ketan & Shikhola, Tushar & Sharma, Rajneesh, 2023. "An imputation and decomposition algorithms based integrated approach with bidirectional LSTM neural network for wind speed prediction," Energy, Elsevier, vol. 278(C).
    11. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    12. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    13. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    14. Zhang, Haipeng & Wang, Jianzhou & Qian, Yuansheng & Li, Qiwei, 2024. "Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM," Energy, Elsevier, vol. 294(C).
    15. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    16. Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
    17. Cardo-Miota, Javier & Trivedi, Rohit & Patra, Sandipan & Khadem, Shafi & Bahloul, Mohamed, 2024. "Data-driven approach for day-ahead System Non-Synchronous Penetration forecasting: A comprehensive framework, model development and analysis," Applied Energy, Elsevier, vol. 362(C).
    18. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
    20. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1658-:d:1367332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.