IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1339-d1354915.html
   My bibliography  Save this article

Theoretical Framework and Research Proposal for Energy Utilization, Conservation, Production, and Intelligent Systems in Tropical Island Zero-Carbon Building

Author

Listed:
  • Qiankun Wang

    (Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
    School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China)

  • Ke Zhu

    (Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
    School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China)

  • Peiwen Guo

    (School of Real Estate and Management Science, Chongqing University, Chongqing 400044, China)

Abstract

This study aims to theoretically explore the technological systems of tropical island zero-carbon building (TIZCB) to scientifically understand the characteristics of these buildings in terms of energy utilization, energy conservation, energy production, and intelligent system mechanisms. The purpose is to address the inefficiencies and resource wastage caused by the traditional segmented approach to building energy consumption management. Thus, it seeks to achieve a comprehensive understanding and application of the zero-carbon building (ZCB) technology system. This article focuses on the demands for energy-efficient comfort and innovative industrialization in construction. Through an analysis of the characteristics of TIZCB and an explanation of their concepts, it establishes a theoretical framework for examining the system mechanisms of these buildings. Additionally, it delves into the energy utilization, energy conservation, energy production, and intelligent system from macro, meso, and micro perspectives. This approach results in the development of an implementation strategy for studying the mechanisms of energy usage, conservation, and intelligent production systems in TIZCB. The results show that: (1) this study delves into the theoretical underpinnings of TIZCB, emphasizing their evolution from a foundation of low-carbon and near-zero energy consumption. The primary goal is to achieve zero carbon emissions during building operation, with reliance on renewable energy sources. Design considerations prioritize adaptation to high-temperature and high-humidity conditions, integrating regional culture along with the utilization of new materials and technologies. (2) A comprehensive technical framework for TIZCB is proposed, encompassing energy utilization, conservation, production capacity, and intelligent systems. Drawing from systems theory, control theory, and synergy theory, the research employs a macro–meso–micro analytical framework, offering extensive theoretical support for the practical aspects of design and optimization. (3) The research implementation plan establishes parameterized models, unveiling the intricate relationships with building performance. It provides optimized intelligent system design parameters for economically viable zero-carbon operations. This study contributes theoretical and practical support for the sustainable development of TIZCB and aligns with the dual carbon strategy in China and the clean energy free trade zone construction in Hainan.

Suggested Citation

  • Qiankun Wang & Ke Zhu & Peiwen Guo, 2024. "Theoretical Framework and Research Proposal for Energy Utilization, Conservation, Production, and Intelligent Systems in Tropical Island Zero-Carbon Building," Energies, MDPI, vol. 17(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1339-:d:1354915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Long Pei & Patrick Schalbart & Bruno Peuportier, 2023. "Quantitative Evaluation of the Effects of Heat Island on Building Energy Simulation: A Case Study in Wuhan, China," Energies, MDPI, vol. 16(7), pages 1-23, March.
    2. Jorge Tabilo Alvarez & Patricio Ramírez-Correa & Saikou Diallo, 2023. "A Brief Review of Systems, Cybernetics, and Complexity," Complexity, Hindawi, vol. 2023, pages 1-22, February.
    3. Wu, Chenyu & Gu, Wei & Luo, Enbo & Chen, Xi & Lu, Hai & Yi, Zhongkai, 2023. "An economic cybernetic model for electricity market operation coupled with physical system dynamics," Applied Energy, Elsevier, vol. 335(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thakur, Jagruti & Hesamzadeh, Mohammad Reza & Date, Paresh & Bunn, Derek, 2023. "Pricing and hedging wind power prediction risk with binary option contracts," Energy Economics, Elsevier, vol. 126(C).
    2. Honglei Shi & Guiling Wang & Wei Zhang & Feng Ma & Wenjing Lin & Menglei Ji, 2023. "Predicting the Potential of China’s Geothermal Energy in Industrial Development and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(9), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1339-:d:1354915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.