IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1307-d1353821.html
   My bibliography  Save this article

Electricity Cost Savings in Energy-Intensive Companies: Optimization Framework and Case Study

Author

Listed:
  • Pablo Benalcazar

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7A, 31-261 Kraków, Poland)

  • Marcin Malec

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7A, 31-261 Kraków, Poland)

  • Przemysław Kaszyński

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7A, 31-261 Kraków, Poland)

  • Jacek Kamiński

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7A, 31-261 Kraków, Poland)

  • Piotr W. Saługa

    (Department of Management, Faculty of Applied Sciences, WSB University, 41-300 Dąbrowa Gornicza, Poland)

Abstract

In recent years, there has been an increasing urgency among energy-intensive companies to find innovative ways of mitigating the negative financial impacts of rising fuel and electricity prices. Consequently, companies are exploring new technological solutions to lower electricity costs, such as investing in their own power generation sources or storage systems. In this context, this article presents a data-driven optimization-based framework to manage and optimize the operation of a hybrid energy system within industries characterized by substantial power requirements. The framework encompasses several key aspects: electricity generation, self-consumption, storage, and electric grid interaction. The case of an energy-intensive company specializing in wood processing and office furniture production is evaluated. This study explored two system configurations of hybrid energy systems within an energy-intensive company. The result of the analyzed case shows that the system’s flexibility is enhanced by its ability to store energy, resulting in electricity cost savings of nearly 72% and total operating cost savings of 20%.

Suggested Citation

  • Pablo Benalcazar & Marcin Malec & Przemysław Kaszyński & Jacek Kamiński & Piotr W. Saługa, 2024. "Electricity Cost Savings in Energy-Intensive Companies: Optimization Framework and Case Study," Energies, MDPI, vol. 17(6), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1307-:d:1353821
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balderrama, Sergio & Lombardi, Francesco & Riva, Fabio & Canedo, Walter & Colombo, Emanuela & Quoilin, Sylvain, 2019. "A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: The case study of the “El Espino” community," Energy, Elsevier, vol. 188(C).
    2. Gomes, I.L.R. & Melicio, R. & Mendes, V.M.F., 2021. "A novel microgrid support management system based on stochastic mixed-integer linear programming," Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bin & Hu, Weihao & Xu, Xiao & Li, Tao & Zhang, Zhenyuan & Chen, Zhe, 2022. "Physical-model-free intelligent energy management for a grid-connected hybrid wind-microturbine-PV-EV energy system via deep reinforcement learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 433-448.
    2. Jun-Mo Kim & Jeong Lee & Jin-Wook Kim & Junsin Yi & Chung-Yuen Won, 2021. "Power Conversion System Operation to Reduce the Electricity Purchasing Cost of Energy Storage Systems," Energies, MDPI, vol. 14(16), pages 1-20, August.
    3. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    4. Isaías Gomes & Rui Melicio & Victor M. F. Mendes, 2021. "Assessing the Value of Demand Response in Microgrids," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    5. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    6. Jianying Li & Minsheng Yang & Yuexing Zhang & Jianqi Li & Jianquan Lu, 2023. "Micro-Grid Day-Ahead Stochastic Optimal Dispatch Considering Multiple Demand Response and Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-15, April.
    7. Silva, Jéssica Alice A. & López, Juan Camilo & Arias, Nataly Bañol & Rider, Marcos J. & da Silva, Luiz C.P., 2021. "An optimal stochastic energy management system for resilient microgrids," Applied Energy, Elsevier, vol. 300(C).
    8. Pickering, Bryn & Choudhary, Ruchi, 2021. "Quantifying resilience in energy systems with out-of-sample testing," Applied Energy, Elsevier, vol. 285(C).
    9. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).
    10. Iria, José & Scott, Paul & Attarha, Ahmad & Gordon, Dan & Franklin, Evan, 2022. "MV-LV network-secure bidding optimisation of an aggregator of prosumers in real-time energy and reserve markets," Energy, Elsevier, vol. 242(C).
    11. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    12. Zhang, Xuehan & Son, Yongju & Cheong, Taesu & Choi, Sungyun, 2022. "Affine-arithmetic-based microgrid interval optimization considering uncertainty and battery energy storage system degradation," Energy, Elsevier, vol. 242(C).
    13. Lu, Xi & Xia, Shiwei & Gu, Wei & Chan, Ka Wing & Shahidehpour, Mohammad, 2021. "Two-stage robust distribution system operation by coordinating electric vehicle aggregator charging and load curtailments," Energy, Elsevier, vol. 226(C).
    14. Wilson Pavon & Esteban Inga & Silvio Simani & Maddalena Nonato, 2021. "A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability," Energies, MDPI, vol. 14(24), pages 1-15, December.
    15. Marzi, Emanuela & Morini, Mirko & Saletti, Costanza & Vouros, Stavros & Zaccaria, Valentina & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2023. "Power-to-Gas for energy system flexibility under uncertainty in demand, production and price," Energy, Elsevier, vol. 284(C).
    16. Yang, Jingxian & Liu, Junyong & Qiu, Gao & Liu, Jichun & Jawad, Shafqat & Zhang, Shuai, 2023. "A spatio-temporality-enabled parallel multi-agent-based real-time dynamic dispatch for hydro-PV-PHS integrated power system," Energy, Elsevier, vol. 278(PB).
    17. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    18. Rovick Tarife & Yosuke Nakanishi & Yining Chen & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2022. "Optimization of Hybrid Renewable Energy Microgrid for Rural Agricultural Area in Southern Philippines," Energies, MDPI, vol. 15(6), pages 1-29, March.
    19. Zandrazavi, Seyed Farhad & Guzman, Cindy Paola & Pozos, Alejandra Tabares & Quiros-Tortos, Jairo & Franco, John Fredy, 2022. "Stochastic multi-objective optimal energy management of grid-connected unbalanced microgrids with renewable energy generation and plug-in electric vehicles," Energy, Elsevier, vol. 241(C).
    20. Tuyen Nguyen-Duc & Linh Hoang-Tuan & Hung Ta-Xuan & Long Do-Van & Hirotaka Takano, 2022. "A Mixed-Integer Programming Approach for Unit Commitment in Micro-Grid with Incentive-Based Demand Response and Battery Energy Storage System," Energies, MDPI, vol. 15(19), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1307-:d:1353821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.