IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1147-d1347840.html
   My bibliography  Save this article

Insulation Resistance Characteristics of Dry DC Link Capacitors in the Presence of High Temperatures and Operating Voltages

Author

Listed:
  • Xiaowu Sun

    (Wuxi Power Filter Co., Ltd., Wuxi 214112, China)

  • Ying Qiao

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Yinda Li

    (Wuxi Power Filter Co., Ltd., Wuxi 214112, China)

  • Chongfeng Cao

    (Wuxi Power Filter Co., Ltd., Wuxi 214112, China)

  • Shenrong Feng

    (Wuxi Power Filter Co., Ltd., Wuxi 214112, China)

Abstract

Insulation resistance is a vital factor in dry DC link capacitors (DCLCs), and crucially influences their voltage equalization and energy storage performance. However, at present, there is a lack of experimental observation on the insulation resistance characteristics of DCLCs in the presence of high temperatures and operating voltages. In the present study, the insulation resistance and conductivity of DCLCs are methodically analyzed. For this purpose, the corresponding test platform is appropriately fabricated, the insulation resistance measurement experiments are performed at various temperatures and operating voltages, and the factors affecting the insulation resistance and conductivity of the DCLC are carefully examined. The results reveal that the insulation resistance of the DCLC reduces exponentially with the growth in voltage and operating temperature. When the operating voltage becomes greater than 4480 V or the operating temperature reaches higher than 70 °C, the decline in insulation resistance slows down. The conductivity of metalized polypropylene film in the DCLC increases exponentially with increasing voltage and temperature. By increasing the operating voltage from 1960 V to 5600 V and the temperature from 20 °C to 90 °C, the DCLC’s insulation resistance exhibits a descending trend from 891.30 MΩ to 2.14 MΩ, while its conductivity grows from 3.49 × 10 −16 S/m to 1.47 × 10 −13 S/m. The results reveal that the key factors affecting the insulation resistance of the DCLC are the polypropylene film and the metal evaporated from the metal layer. This research is anticipated to provide a valuable reference for the further development of science and technology pertinent to the insulation resistance of DCLCs.

Suggested Citation

  • Xiaowu Sun & Ying Qiao & Yinda Li & Chongfeng Cao & Shenrong Feng, 2024. "Insulation Resistance Characteristics of Dry DC Link Capacitors in the Presence of High Temperatures and Operating Voltages," Energies, MDPI, vol. 17(5), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1147-:d:1347840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sin-Dong Kang & Jae-Ho Kim, 2020. "Investigation on the Insulation Resistance Characteristics of Low Voltage Cable," Energies, MDPI, vol. 13(14), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xufei Ge & Fulin Fan & Martin J. Given & Brian G. Stewart, 2024. "Insulation Resistance Degradation Models of Extruded Power Cables under Thermal Ageing," Energies, MDPI, vol. 17(5), pages 1-22, February.
    2. Egnonnumi Lorraine Codjo & Bashir Bakhshideh Zad & Jean-François Toubeau & Bruno François & François Vallée, 2021. "Machine Learning-Based Classification of Electrical Low Voltage Cable Degradation," Energies, MDPI, vol. 14(10), pages 1-20, May.
    3. Marius Florian Preduș & Cristinel Popescu & Eugen Răduca & Cornel Hațiegan, 2022. "Study of the Accelerated Degradation of the Insulation of Power Cables under the Action of the Acid Environment," Energies, MDPI, vol. 15(10), pages 1-10, May.
    4. Min Ho Kim & Hyun Jeong Seo & Sang Kyu Lee & Min Chul Lee, 2021. "Influence of Thermal Aging on the Combustion Characteristics of Cables in Nuclear Power Plants," Energies, MDPI, vol. 14(7), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1147-:d:1347840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.