IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3611-d384047.html
   My bibliography  Save this article

Investigation on the Insulation Resistance Characteristics of Low Voltage Cable

Author

Listed:
  • Sin-Dong Kang

    (Department of Fire & Disaster Prevention Engineering, Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34520, Korea)

  • Jae-Ho Kim

    (Department of Fire & Disaster Prevention Engineering, Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34520, Korea)

Abstract

This study evaluated the insulation resistance characteristics of TFR-8 (Tray Frame Retardant power cable for fire service) and VCTF (Light PVC Sheathed Circular Cord) cables under external flame, over-current, and accelerated degradation tests. In the accelerated degradation test of the cable, aging times of 10, 20, 30, and 40 years were tested according to a temperature derived using the Arrhenius equation. The insulation resistance of the TFR-8 cables was reduced from a maximum of 7.5 T ohm to 0.008 T ohm during the flame contact and recovered to its original state after cooling. However, dielectric breakdown occurred in the VCTF cable during flame contact and the cable did not return to its original state, even after cooling. In the forced convection oven test, the insulation resistance of the cable was reduced at 160 °C, whereas the insulation resistance of the cable was reduced at 125 °C in the over-current test. This result implied that the over-current had a greater impact than did heat applied externally on the degradation of the cable insulator. In the accelerated degradation tests from 10–30 years, the TFR-8 cable did not show any reduction in insulation resistance at room temperature. However, after an induced aging time of 40 years, the cable showed a rapid reduction in insulation resistance at room temperature.

Suggested Citation

  • Sin-Dong Kang & Jae-Ho Kim, 2020. "Investigation on the Insulation Resistance Characteristics of Low Voltage Cable," Energies, MDPI, vol. 13(14), pages 1-9, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3611-:d:384047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3611/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Egnonnumi Lorraine Codjo & Bashir Bakhshideh Zad & Jean-François Toubeau & Bruno François & François Vallée, 2021. "Machine Learning-Based Classification of Electrical Low Voltage Cable Degradation," Energies, MDPI, vol. 14(10), pages 1-20, May.
    2. Xiaowu Sun & Ying Qiao & Yinda Li & Chongfeng Cao & Shenrong Feng, 2024. "Insulation Resistance Characteristics of Dry DC Link Capacitors in the Presence of High Temperatures and Operating Voltages," Energies, MDPI, vol. 17(5), pages 1-16, February.
    3. Min Ho Kim & Hyun Jeong Seo & Sang Kyu Lee & Min Chul Lee, 2021. "Influence of Thermal Aging on the Combustion Characteristics of Cables in Nuclear Power Plants," Energies, MDPI, vol. 14(7), pages 1-17, April.
    4. Xufei Ge & Fulin Fan & Martin J. Given & Brian G. Stewart, 2024. "Insulation Resistance Degradation Models of Extruded Power Cables under Thermal Ageing," Energies, MDPI, vol. 17(5), pages 1-22, February.
    5. Marius Florian Preduș & Cristinel Popescu & Eugen Răduca & Cornel Hațiegan, 2022. "Study of the Accelerated Degradation of the Insulation of Power Cables under the Action of the Acid Environment," Energies, MDPI, vol. 15(10), pages 1-10, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3611-:d:384047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.