IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1053-d1344387.html
   My bibliography  Save this article

Deep Learning for Wind and Solar Energy Forecasting in Hydrogen Production

Author

Listed:
  • Arturs Nikulins

    (Institute of Electronics and Computer Science, LV-1006 Riga, Latvia)

  • Kaspars Sudars

    (Institute of Electronics and Computer Science, LV-1006 Riga, Latvia)

  • Edgars Edelmers

    (Institute of Electronics and Computer Science, LV-1006 Riga, Latvia)

  • Ivars Namatevs

    (Institute of Electronics and Computer Science, LV-1006 Riga, Latvia)

  • Kaspars Ozols

    (Institute of Electronics and Computer Science, LV-1006 Riga, Latvia)

  • Vitalijs Komasilovs

    (Institute of Computer Systems and Data Science, Faculty of Engineering and Information Technologies, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia)

  • Aleksejs Zacepins

    (Institute of Computer Systems and Data Science, Faculty of Engineering and Information Technologies, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia)

  • Armands Kviesis

    (Institute of Computer Systems and Data Science, Faculty of Engineering and Information Technologies, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia)

  • Andreas Reinhardt

    (Department of Informatics, Technische Universität Clausthal, 38678 Clausthal-Zellerfeld, Germany)

Abstract

This research delineates a pivotal advancement in the domain of sustainable energy systems, with a focused emphasis on the integration of renewable energy sources—predominantly wind and solar power—into the hydrogen production paradigm. At the core of this scientific endeavor is the formulation and implementation of a deep-learning-based framework for short-term localized weather forecasting, specifically designed to enhance the efficiency of hydrogen production derived from renewable energy sources. The study presents a comprehensive evaluation of the efficacy of fully connected neural networks (FCNs) and convolutional neural networks (CNNs) within the realm of deep learning, aimed at refining the accuracy of renewable energy forecasts. These methodologies have demonstrated remarkable proficiency in navigating the inherent complexities and variabilities associated with renewable energy systems, thereby significantly improving the reliability and precision of predictions pertaining to energy output. The cornerstone of this investigation is the deployment of an artificial intelligence (AI)-driven weather forecasting system, which meticulously analyzes data procured from 25 distinct weather monitoring stations across Latvia. This system is specifically tailored to deliver short-term (1 h ahead) forecasts, employing a comprehensive sensor fusion approach to accurately predicting wind and solar power outputs. A major finding of this research is the achievement of a mean squared error (MSE) of 1.36 in the forecasting model, underscoring the potential of this approach in optimizing renewable energy utilization for hydrogen production. Furthermore, the paper elucidates the construction of the forecasting model, revealing that the integration of sensor fusion significantly enhances the model’s predictive capabilities by leveraging data from multiple sources to generate a more accurate and robust forecast. The entire codebase developed during this research endeavor has been made available on an open access GIT server.

Suggested Citation

  • Arturs Nikulins & Kaspars Sudars & Edgars Edelmers & Ivars Namatevs & Kaspars Ozols & Vitalijs Komasilovs & Aleksejs Zacepins & Armands Kviesis & Andreas Reinhardt, 2024. "Deep Learning for Wind and Solar Energy Forecasting in Hydrogen Production," Energies, MDPI, vol. 17(5), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1053-:d:1344387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1053/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1053/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
    2. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    3. Ghadah Alkhayat & Syed Hamid Hasan & Rashid Mehmood, 2022. "SENERGY: A Novel Deep Learning-Based Auto-Selective Approach and Tool for Solar Energy Forecasting," Energies, MDPI, vol. 15(18), pages 1-55, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    2. Ashkan Safari & Hamed Kheirandish Gharehbagh & Morteza Nazari Heris, 2023. "DeepVELOX: INVELOX Wind Turbine Intelligent Power Forecasting Using Hybrid GWO–GBR Algorithm," Energies, MDPI, vol. 16(19), pages 1-22, September.
    3. Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
    4. Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
    5. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    6. Jian Zhu & Zhiyuan Zhao & Xiaoran Zheng & Zhao An & Qingwu Guo & Zhikai Li & Jianling Sun & Yuanjun Guo, 2023. "Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer," Energies, MDPI, vol. 16(22), pages 1-15, November.
    7. Tadeusz A. Grzeszczyk & Michal K. Grzeszczyk, 2022. "Justifying Short-Term Load Forecasts Obtained with the Use of Neural Models," Energies, MDPI, vol. 15(5), pages 1-20, March.
    8. Shang, Yitong & Li, Sen, 2024. "FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data," Applied Energy, Elsevier, vol. 358(C).
    9. Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
    10. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    11. Jiankai Gao & Yang Li & Bin Wang & Haibo Wu, 2023. "Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm," Energies, MDPI, vol. 16(7), pages 1-21, April.
    12. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    13. A-Hyun Jung & Dong-Hyun Lee & Jin-Young Kim & Chang Ki Kim & Hyun-Goo Kim & Yung-Seop Lee, 2022. "Regional Photovoltaic Power Forecasting Using Vector Autoregression Model in South Korea," Energies, MDPI, vol. 15(21), pages 1-13, October.
    14. Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
    15. Ashok Bhansali & Namala Narasimhulu & Rocío Pérez de Prado & Parameshachari Bidare Divakarachari & Dayanand Lal Narayan, 2023. "A Review on Sustainable Energy Sources Using Machine Learning and Deep Learning Models," Energies, MDPI, vol. 16(17), pages 1-18, August.
    16. Katarzyna Poczeta & Elpiniki I. Papageorgiou, 2022. "Energy Use Forecasting with the Use of a Nested Structure Based on Fuzzy Cognitive Maps and Artificial Neural Networks," Energies, MDPI, vol. 15(20), pages 1-18, October.
    17. Abdoos, Ali Akbar & Abdoos, Hatef & Kazemitabar, Javad & Mobashsher, Mohammad Mehdi & Khaloo, Hooman, 2023. "An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction," Energy, Elsevier, vol. 278(PA).
    18. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Tingting Hou & Rengcun Fang & Jinrui Tang & Ganheng Ge & Dongjun Yang & Jianchao Liu & Wei Zhang, 2021. "A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms," Energies, MDPI, vol. 14(22), pages 1-21, November.
    20. Wassila Tercha & Sid Ahmed Tadjer & Fathia Chekired & Laurent Canale, 2024. "Machine Learning-Based Forecasting of Temperature and Solar Irradiance for Photovoltaic Systems," Energies, MDPI, vol. 17(5), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1053-:d:1344387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.