IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1035-d1343945.html
   My bibliography  Save this article

Thermal Evolution of NiFe-NO 3 LDH and Its Application in Energy Storage Systems

Author

Listed:
  • Marco Fortunato

    (Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy)

  • Andrea Pietro Reverberi

    (Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy)

  • Bruno Fabiano

    (Department of Civil, Chemical and Environmental Engineering, Polytechnic School, Università degli Studi di Genova, Via Opera Pia 15, 16145 Genova, Italy)

  • Anna Maria Cardinale

    (Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy)

Abstract

In this work, the performances of nickel iron layered double hydroxides (LDH) with the nitrate anion at the interlayer (NiFe-NO 3 ) for the manufacture of anodes for lithium-ion batteries have been tested before and after its sintering at different temperatures. After synthesis, the material was thermally analyzed in a range 30–1250 °C, showing a mass loss occurring in three different consecutive steps leading to a total mass decrease of ~30 mass%. Following thermogravimetric analysis (TGA), four samples were prepared by annealing at four different temperatures: one of the four did not undergo a thermal treatment (NiFe-0), while the remaining three were annealed at 250 °C, 360 °C, and 560 °C for 6 h (NiFe-250, NiFe-360, and NiFe-560). All materials where completely characterized via FE-SEM, PXRD, and FT-IR. The pristine LDH material showed some structural and compositional changes for growing temperatures, starting from the typical turbostratic hexagonal structure through a mixture of amorphous metal oxides and finally to the stoichiometric oxides FeNi 2 O 4 and NiO. The as-obtained materials were mixed with carbon black (C65) and sodium alginate and tested as electrodes in Swagelok half cells in LP30 vs. metallic Li to perform CV and GCPL analysis. The electrochemical tests showed that the performances of NiFe-0, both in terms of stability and specific capacity, are not so different from the one of the NiFe-560, even if the Ni mass% in the former is lower than in the NiFe-560. This phenomenon could be explained by assuming a combined mechanism of reaction involving both intercalation and conversion.

Suggested Citation

  • Marco Fortunato & Andrea Pietro Reverberi & Bruno Fabiano & Anna Maria Cardinale, 2024. "Thermal Evolution of NiFe-NO 3 LDH and Its Application in Energy Storage Systems," Energies, MDPI, vol. 17(5), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1035-:d:1343945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Hörbe Emanuelsson & Filip Johnsson, 2023. "The Cost to Consumers of Carbon Capture and Storage—A Product Value Chain Analysis," Energies, MDPI, vol. 16(20), pages 1-23, October.
    2. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Nadaleti, Willian Cézar & Cardozo, Emanuélle & Bittencourt Machado, Jones & Maximilla Pereira, Peterson & Costa dos Santos, Maele & Gomes de Souza, Eduarda & Haertel, Paula & Kunde Correa, Erico & Vie, 2023. "Hydrogen and electricity potential generation from rice husks and persiculture biomass in Rio Grande do Sul, Brazil," Renewable Energy, Elsevier, vol. 216(C).
    3. Yu, Qinghua & Ao, Rui & Yan, Fuwu & Liu, Xuan & Li, Yongliang, 2024. "Numerical analysis on ammonia decomposition for hydrogen production in a membrane reactor assisted by a parabolic trough solar collector," Renewable Energy, Elsevier, vol. 225(C).
    4. Sun, Lejia & Jia, Jingqi & Wang, QuanLi & Zhang, Yimeng, 2024. "A novel multiphase DC/DC boost converter for interaction of solar energy and hydrogen fuel cell in hybrid electric vehicles," Renewable Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1035-:d:1343945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.