A Numerical Method for the Dynamics Analysis of Blade Fracture Faults in Wind Turbines Using Geometrically Exact Beam Theory and Its Validation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ji, Y.M. & Han, K.S., 2014. "Fracture mechanics approach for failure of adhesive joints in wind turbine blades," Renewable Energy, Elsevier, vol. 65(C), pages 23-28.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Murray, Robynne E. & Roadman, Jason & Beach, Ryan, 2019. "Fusion joining of thermoplastic composite wind turbine blades: Lap-shear bond characterization," Renewable Energy, Elsevier, vol. 140(C), pages 501-512.
- Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
- Shah, Owaisur Rahman & Tarfaoui, Mostapha, 2016. "The identification of structurally sensitive zones subject to failure in a wind turbine blade using nodal displacement based finite element sub-modeling," Renewable Energy, Elsevier, vol. 87(P1), pages 168-181.
- Zuo, Yangjie & Montesano, John & Singh, Chandra Veer, 2018. "Assessing progressive failure in long wind turbine blades under quasi-static and cyclic loads," Renewable Energy, Elsevier, vol. 119(C), pages 754-766.
- Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
- Lux, Philipp & Cassano, Alessandro G. & Johnson, Stephen B. & Maiaru, Marianna & Stapleton, Scott E., 2020. "Adhesive curing cycle time optimization in wind turbine blade manufacturing," Renewable Energy, Elsevier, vol. 162(C), pages 397-410.
- Patrick D. Moroney & Amrit Shankar Verma, 2023. "Durability and Damage Tolerance Analysis Approaches for Wind Turbine Blade Trailing Edge Life Prediction: A Technical Review," Energies, MDPI, vol. 16(24), pages 1-33, December.
- Zengyi Zhang & Zhenru Shu, 2024. "Unmanned Aerial Vehicle (UAV)-Assisted Damage Detection of Wind Turbine Blades: A Review," Energies, MDPI, vol. 17(15), pages 1-31, July.
- Mathijs Peeters & Gilberto Santo & Joris Degroote & Wim Van Paepegem, 2018. "Comparison of Shell and Solid Finite Element Models for the Static Certification Tests of a 43 m Wind Turbine Blade," Energies, MDPI, vol. 11(6), pages 1-18, May.
More about this item
Keywords
wind turbine; nonlinear geometric large deformation; blade fracture; geometrically exact beam; aeroelasticity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:824-:d:1336447. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.