IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp397-410.html
   My bibliography  Save this article

Adhesive curing cycle time optimization in wind turbine blade manufacturing

Author

Listed:
  • Lux, Philipp
  • Cassano, Alessandro G.
  • Johnson, Stephen B.
  • Maiaru, Marianna
  • Stapleton, Scott E.

Abstract

The curing of adhesives in wind turbine blades is a cost and time-intensive manufacturing step. Bondlines are critical to the structural integrity of the blade, but substantial variation in bondline thickness can result in different thermal histories and even degradation of the adhesive due to its exothermic reaction. Models to predict the thermal behavior of adhesive bondlines during the curing step, taking manufacturing conditions and variation in thickness into account, are needed to minimize cure times while avoiding excess temperature. In this study, a finite element model capable of tracing the thermal and conversion histories of the adhesive was developed. Standard heat transfer equations were coupled with cure kinetics in the model through user subroutines, and the cure kinetics were characterized and validated experimentally. A 2D cross-section model of a wind turbine blade was created to simulate the adhesive curing cycle in a manufacturing setting. This model was used to highlight critical aspects of the curing cycle and test methods to shorten the cycle time while maintaining the integrity of the bond. Several improvement methods and their potential cycle time savings were investigated, such as implementing individual heating and cooling zones for each adhesive area and additional spar cap heating/cooling.

Suggested Citation

  • Lux, Philipp & Cassano, Alessandro G. & Johnson, Stephen B. & Maiaru, Marianna & Stapleton, Scott E., 2020. "Adhesive curing cycle time optimization in wind turbine blade manufacturing," Renewable Energy, Elsevier, vol. 162(C), pages 397-410.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:397-410
    DOI: 10.1016/j.renene.2020.08.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Y.M. & Han, K.S., 2014. "Fracture mechanics approach for failure of adhesive joints in wind turbine blades," Renewable Energy, Elsevier, vol. 65(C), pages 23-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murray, Robynne E. & Roadman, Jason & Beach, Ryan, 2019. "Fusion joining of thermoplastic composite wind turbine blades: Lap-shear bond characterization," Renewable Energy, Elsevier, vol. 140(C), pages 501-512.
    2. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    3. Shah, Owaisur Rahman & Tarfaoui, Mostapha, 2016. "The identification of structurally sensitive zones subject to failure in a wind turbine blade using nodal displacement based finite element sub-modeling," Renewable Energy, Elsevier, vol. 87(P1), pages 168-181.
    4. Zuo, Yangjie & Montesano, John & Singh, Chandra Veer, 2018. "Assessing progressive failure in long wind turbine blades under quasi-static and cyclic loads," Renewable Energy, Elsevier, vol. 119(C), pages 754-766.
    5. Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
    6. Xianyou Wu & Kai Feng & Qing’an Li, 2024. "A Numerical Method for the Dynamics Analysis of Blade Fracture Faults in Wind Turbines Using Geometrically Exact Beam Theory and Its Validation," Energies, MDPI, vol. 17(4), pages 1-18, February.
    7. Patrick D. Moroney & Amrit Shankar Verma, 2023. "Durability and Damage Tolerance Analysis Approaches for Wind Turbine Blade Trailing Edge Life Prediction: A Technical Review," Energies, MDPI, vol. 16(24), pages 1-33, December.
    8. Zengyi Zhang & Zhenru Shu, 2024. "Unmanned Aerial Vehicle (UAV)-Assisted Damage Detection of Wind Turbine Blades: A Review," Energies, MDPI, vol. 17(15), pages 1-31, July.
    9. Mathijs Peeters & Gilberto Santo & Joris Degroote & Wim Van Paepegem, 2018. "Comparison of Shell and Solid Finite Element Models for the Static Certification Tests of a 43 m Wind Turbine Blade," Energies, MDPI, vol. 11(6), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:397-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.