IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p818-d1335906.html
   My bibliography  Save this article

Multi-Objective Optimization of the Microchannel Heat Sink Used for Combustor of the Gas Turbine

Author

Listed:
  • Xiaoming Zhang

    (Shaanxi Special Equipment Inspection and Testing Institute, Xi’an 710049, China)

  • Tao Yang

    (Shaanxi Special Equipment Inspection and Testing Institute, Xi’an 710049, China)

  • Zhenyuan Chang

    (Shaanxi Special Equipment Inspection and Testing Institute, Xi’an 710049, China)

  • Liang Xu

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Lei Xi

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Jianmin Gao

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Penggang Zheng

    (Shaanxi Special Equipment Inspection and Testing Institute, Xi’an 710049, China)

  • Ran Xu

    (Shaanxi Special Equipment Inspection and Testing Institute, Xi’an 710049, China)

Abstract

This research presents a surrogate model and computational fluid dynamic analysis-based multi-objective optimization approach for microchannel heat sinks. The Non-dominated Sorting Genetic Algorithm is suggested to obtain the optimal solution set, and the Kriging model is employed to lower the simulation’s computational cost. The physical model consists of a coolant chamber, a mainstream chamber, and a solid board equipped with staggered Zigzag cooling channels. Five design variables are examined in relation to the geometric characteristics of the microchannel heat sinks: the length of inlet of the cooling channels, the width of the cooling channels, the length of the “zigzag”, the height of the cooling channels, and the periodic spanwise width. The optimal geometry is established by choosing the averaged cooling effectiveness and coolant mass flow rate which enters the mainstream chamber through the microchannel heat sinks as separate objectives. From the Pareto front, the optimal microchannel heat sinks structures are obtained. Three optimized results are studied, including the maximum cooling effectiveness, minimum coolant mass flow rate, and a compromise between the both objectives; a reference case using the median is compared as well. Numerical assessments corresponding to the four cases are performed, and the flow and cooling performance are compared. Furthermore, an analysis is conducted on the mechanisms that impact the ideal geometric parameters for cooling performance.

Suggested Citation

  • Xiaoming Zhang & Tao Yang & Zhenyuan Chang & Liang Xu & Lei Xi & Jianmin Gao & Penggang Zheng & Ran Xu, 2024. "Multi-Objective Optimization of the Microchannel Heat Sink Used for Combustor of the Gas Turbine," Energies, MDPI, vol. 17(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:818-:d:1335906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Zitrou, Athena & Bedford, Tim & Walls, Lesley, 2016. "A model for availability growth with application to new generation offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 83-94.
    3. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    4. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    5. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    6. Song, Zhouzhou & Zhang, Hanyu & Liu, Zhao & Zhu, Ping, 2023. "A two-stage Kriging estimation variance reduction method for efficient time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    9. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Classic Kriging versus Kriging with Bootstrapping or Conditional Simulation : Classic Kriging's Robust Confidence Intervals and Optimization (Revised version of CentER DP 2013-038)," Other publications TiSEM 4915047b-afe4-4fc7-8a1c-4, Tilburg University, School of Economics and Management.
    10. Stephen Ntiri Asomani & Jianping Yuan & Longyan Wang & Desmond Appiah & Kofi Asamoah Adu-Poku, 2020. "The Impact of Surrogate Models on the Multi-Objective Optimization of Pump-As-Turbine (PAT)," Energies, MDPI, vol. 13(9), pages 1-29, May.
    11. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    12. Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
    13. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    14. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji, 2023. "Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    15. J.-J. Sinou & L. Nechak & S. Besset, 2018. "Kriging Metamodeling in Rotordynamics: Application for Predicting Critical Speeds and Vibrations of a Flexible Rotor," Complexity, Hindawi, vol. 2018, pages 1-26, March.
    16. Mert Edali, 2022. "Pattern‐oriented analysis of system dynamics models via random forests," System Dynamics Review, System Dynamics Society, vol. 38(2), pages 135-166, April.
    17. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    18. Morales-Enciso, Sergio & Branke, Juergen, 2015. "Tracking global optima in dynamic environments with efficient global optimization," European Journal of Operational Research, Elsevier, vol. 242(3), pages 744-755.
    19. Peter Frazier & Warren Powell & Savas Dayanik, 2009. "The Knowledge-Gradient Policy for Correlated Normal Beliefs," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 599-613, November.
    20. Xuan Li & Xiaoping Zhou & Jingming Hou & Yuan Liu & Shuhong Xue & Huan Ma & Bowen Su, 2024. "A Hydrodynamic Model and Data-Driven Evolutionary Multi-Objective Optimization Algorithm Based Optimal Operation Method for Multi-barrage Flood Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4323-4341, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:818-:d:1335906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.