IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p775-d1334327.html
   My bibliography  Save this article

Energy Transition: Semi-Automatic BIM Tool Approach for Elevating Sustainability in the Maputo Natural History Museum

Author

Listed:
  • Giuseppe Piras

    (Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, 00184 Roma, Italy)

  • Francesco Muzi

    (Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, 00184 Roma, Italy)

Abstract

Mozambique is experiencing the consequences of a severe energy crisis with economic and social impacts. Its strict dependence on hydroelectric sources is being severely tested by recent droughts that have drastically reduced water levels in dams. However, Mozambique is addressing energy poverty by exploring renewable energy sources thanks to investments in the sector by the European Union. The research concerns an energy analysis profile of the country and the penetration of renewable energy, presenting an energy upgrading scope through a semi-automatic calculation methodology in a Building Information Modeling (BIM) environment. The building under study, located in Maputo, is the Natural History Museum, which plays an important role in biodiversity conservation. Therefore, this paper proposes a BIM methodology for sizing an environmental control system tailored to serve the museum. The proposed system replaces the previous one and includes a photovoltaic system that not only meets the museum’s load but also supplies electricity to the surrounding area. Energy production from renewable sources with a surplus of 30% has been achieved. The proposed digital methodology has identified a maximum gap of 1.5% between the dimensions of the BIM duct and those of a traditional plant design, meeting ASHRAE requirements for environmental control.

Suggested Citation

  • Giuseppe Piras & Francesco Muzi, 2024. "Energy Transition: Semi-Automatic BIM Tool Approach for Elevating Sustainability in the Maputo Natural History Museum," Energies, MDPI, vol. 17(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:775-:d:1334327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Rusca & Elisa Savelli & Giuliano Di Baldassarre & Adriano Biza & Gabriele Messori, 2023. "Unprecedented droughts are expected to exacerbate urban inequalities in Southern Africa," Nature Climate Change, Nature, vol. 13(1), pages 98-105, January.
    2. Yang, Xining & Hu, Mingming & Tukker, Arnold & Zhang, Chunbo & Huo, Tengfei & Steubing, Bernhard, 2022. "A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands," Applied Energy, Elsevier, vol. 306(PA).
    3. Binjin Chen & Shaohua Jiang & Ligang Qi & Yawu Su & Yufeng Mao & Meng Wang & Hee Sung Cha, 2022. "Design and Implementation of Quantity Calculation Method Based on BIM Data," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    4. Kong, Minjin & Hong, Taehoon & Ji, Changyoon & Kang, Hyuna & Lee, Minhyun, 2020. "Development of building driven-energy payback time for energy transition of building with renewable energy systems," Applied Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Yijun & Xu, Wei & Wang, Zhichao & Zhang, Shicong & Chen, Xi & Zhang, Xinyu, 2023. "Experimental study on thermoelectric effect pattern analysis and novel thermoelectric coupling model of BIPV facade system," Renewable Energy, Elsevier, vol. 217(C).
    2. Elisa Savelli & Maurizio Mazzoleni & Giuliano Baldassarre & Hannah Cloke & Maria Rusca, 2023. "Urban water crises driven by elites’ unsustainable consumption," Nature Sustainability, Nature, vol. 6(8), pages 929-940, August.
    3. Liu, Xuan & Yang, Dujuan & Arentze, Theo & Wielders, Tom, 2023. "The willingness of social housing tenants to participate in natural gas-free heating systems project: Insights from a stated choice experiment in the Netherlands," Applied Energy, Elsevier, vol. 350(C).
    4. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
    6. Ying Li & Yani Lai & Yanliu Lin, 2024. "The Role of Diversified Geo-Information Technologies in Urban Governance: A Literature Review," Land, MDPI, vol. 13(9), pages 1-27, September.
    7. Wang, Jijin & Qv, Dehu & Yao, Yang & Ni, Long, 2021. "The difference between vapor injection cycle with flash tank and intermediate heat exchanger for air source heat pump: An experimental and theoretical study," Energy, Elsevier, vol. 221(C).
    8. Peris Pérez, Bernardo & Ávila Gutiérrez, Miguel & Expósito Carrillo, José Antonio & Salmerón Lissén, José Manuel, 2022. "Performance of Solar-driven Ejector Refrigeration System (SERS) as pre-cooling system for air handling units in warm climates," Energy, Elsevier, vol. 238(PA).
    9. Yang, Xining & Hu, Mingming & Tukker, Arnold & Zhang, Chunbo & Huo, Tengfei & Steubing, Bernhard, 2022. "A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands," Applied Energy, Elsevier, vol. 306(PA).
    10. Robert Mutemi Kajiita & Simon Murote Kang’ethe, 2024. "Socio-Economic Dynamics Inhibiting Inclusive Urban Economic Development: Implications for Sustainable Urban Development in South African Cities," Sustainability, MDPI, vol. 16(7), pages 1-17, March.
    11. Fang, Zigeng & Yan, Jiayi & Lu, Qiuchen & Chen, Long & Yang, Pu & Tang, Junqing & Jiang, Feng & Broyd, Tim & Hong, Jingke, 2023. "A systematic literature review of carbon footprint decision-making approaches for infrastructure and building projects," Applied Energy, Elsevier, vol. 335(C).
    12. Apostolopoulos, Vasilis & Mamounakis, Ioannis & Seitaridis, Andreas & Tagkoulis, Nikolas & Kourkoumpas, Dimitrios-Sotirios & Iliadis, Petros & Angelakoglou, Komninos & Nikolopoulos, Nikolaos, 2023. "Αn integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool," Applied Energy, Elsevier, vol. 334(C).
    13. Sarıca, Kemal & Harputlugil, Gulsu U. & İnaner, Gulfem & Kollugil, Esin Tetik, 2023. "Building sector emission reduction assessment from a developing European economy: A bottom-up modelling approach," Energy Policy, Elsevier, vol. 174(C).
    14. Ma, Nan & Waegel, Alex & Hakkarainen, Max & Braham, William W. & Glass, Lior & Aviv, Dorit, 2023. "Blockchain + IoT sensor network to measure, evaluate and incentivize personal environmental accounting and efficient energy use in indoor spaces," Applied Energy, Elsevier, vol. 332(C).
    15. Zhang, Sheng & Ocłoń, Paweł & Klemeš, Jiří Jaromír & Michorczyk, Piotr & Pielichowska, Kinga & Pielichowski, Krzysztof, 2022. "Renewable energy systems for building heating, cooling and electricity production with thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:775-:d:1334327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.