IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p739-d1333123.html
   My bibliography  Save this article

The Impact of the Rule of Law on Energy Policy in European Union Member States

Author

Listed:
  • Radoslaw Wisniewski

    (School of Business, University of Economics and Human Sciences in Warsaw, 01-043 Warsaw, Poland)

  • Aneta Nowakowska-Krystman

    (School of Social Sciences, University of Economics and Human Sciences in Warsaw, 01-043 Warsaw, Poland)

  • Tomasz Kownacki

    (School of Social Sciences, University of Economics and Human Sciences in Warsaw, 01-043 Warsaw, Poland)

  • Piotr Daniluk

    (Faculty of Security Sciences, General Tadeusz Kosciuszko Military University of Land Forces, 51-147 Wroclaw, Poland)

Abstract

Research pertaining to the dual-tier political system within the European Union (EU), specifically concerning the genesis and execution of EU policies, has garnered substantial scholarly attention. These inquiries delve into multifaceted dimensions, encompassing institutional dynamics, procedural intricacies, questions of legitimacy, and intricate relational dynamics entailing international diplomacy with other actors within the realm of international law. Nonetheless, a particularly intriguing and underexplored facet remains: the influence of member states’ compliance with the rule of law on the implementation of EU policies, particularly within the realm of energy policy. This article aims to elucidate the nexus between the realization of energy policy objectives in EU member states and fidelity to the rule of law. The conundrum of establishing a correlation between the indicators of environmentally sustainable energy policy and commitment to upholding the rule of law remains uncharted territory within the existing body of literature. Our analysis centers on a dataset derived from publicly accessible sources, reflecting data from the year 2020.

Suggested Citation

  • Radoslaw Wisniewski & Aneta Nowakowska-Krystman & Tomasz Kownacki & Piotr Daniluk, 2024. "The Impact of the Rule of Law on Energy Policy in European Union Member States," Energies, MDPI, vol. 17(3), pages 1-31, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:739-:d:1333123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chiranjib Bhowmik & Sumit Bhowmik & Amitava Ray, 2020. "Optimal green energy source selection: An eclectic decision," Energy & Environment, , vol. 31(5), pages 842-859, August.
    2. Mark Bergen & Margaret A. Peteraf, 2002. "Competitor identification and competitor analysis: a broad-based managerial approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 23(4-5), pages 157-169.
    3. Krzysztof Wach & Agnieszka Głodowska & Marek Maciejewski & Marek Sieja, 2021. "Europeanization Processes of the EU Energy Policy in Visegrad Countries in the Years 2005–2018," Energies, MDPI, vol. 14(7), pages 1-23, March.
    4. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    2. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    3. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    4. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    5. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    6. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    8. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    9. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    10. Ewa C. E. Rönnebro & Greg Whyatt & Michael Powell & Matthew Westman & Feng (Richard) Zheng & Zhigang Zak Fang, 2015. "Metal Hydrides for High-Temperature Power Generation," Energies, MDPI, vol. 8(8), pages 1-25, August.
    11. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    12. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    13. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    14. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    15. Wang, Jiayu, 2016. "Do light vehicle emissions standards promote environmental goals in Australia?," Conference papers 332692, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    17. Ondraczek, Janosch, 2014. "Are we there yet? Improving solar PV economics and power planning in developing countries: The case of Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 604-615.
    18. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    19. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    20. Peixiao Fan & Jia Hu & Song Ke & Yuxin Wen & Shaobo Yang & Jun Yang, 2022. "A Frequency–Pressure Cooperative Control Strategy of Multi-Microgrid with an Electric–Gas System Based on MADDPG," Sustainability, MDPI, vol. 14(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:739-:d:1333123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.