IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p276-d1313567.html
   My bibliography  Save this article

Improving Thermal Energy Storage in Solar Collectors: A Study of Aluminum Oxide Nanoparticles and Flow Rate Optimization

Author

Listed:
  • Mohammad Hamdan

    (Department of Renewable Energy Technology, Faculty of Engineering and Technology, Applied Science Private University, P.O. Box 541350, Amman 11937, Jordan)

  • Eman Abdelhafez

    (Department of Alternative Energy Technology, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, Amman 11733, Jordan)

  • Salman Ajib

    (Department of Renewable Energies and Decentralized Energy Supplying, Faculty of Environmental Engineering and Applied Informatics, Technische Hochschule Ostwestfallen-Lippe (University of Applied Sciences and Arts), 32657 Lemgo, Germany)

  • Mustafa Sukkariyh

    (Department of Alternative Energy Technology, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, Amman 11733, Jordan)

Abstract

Solar thermal energy storage improves the practicality and efficiency of solar systems for space heating by addressing the intermittent nature of solar radiation, leading to enhanced energy utilization, cost reduction, and a more sustainable and environmentally friendly approach to meeting heating needs in residential, commercial, and industrial settings. In this study, an indoor experimental setup was employed to investigate the impact of a water-based Al 2 O 3 nanofluid on the storage capacity of a flat plate solar collector under varying flow rates of the heat transfer fluid. The nanofluid, introduced at specific concentrations, was incorporated into a water-contained storage tank through which the hot heat transfer fluid circulated within a heat exchanger. This process resulted in the storage of thermal energy for future applications. The research identified that the optimal flow rate of the heat transfer fluid, corresponding to the maximum storage temperature, was 15 L per hour, and the ideal nanofluid concentration, associated with the maximum specific heat capacity of the storage medium, was 0.6%. Furthermore, the introduction of nanoparticles into the storage tank led to a significant increase in the specific heat of the water, reaching a maximum of 19% from 4.18 to 5.65 kJ/(kg·°C).

Suggested Citation

  • Mohammad Hamdan & Eman Abdelhafez & Salman Ajib & Mustafa Sukkariyh, 2024. "Improving Thermal Energy Storage in Solar Collectors: A Study of Aluminum Oxide Nanoparticles and Flow Rate Optimization," Energies, MDPI, vol. 17(2), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:276-:d:1313567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukkamala, Yagnavalkya, 2017. "Contemporary trends in thermo-hydraulic testing and modeling of automotive radiators deploying nano-coolants and aerodynamically efficient air-side fins," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1208-1229.
    2. Evangelos Bellos & Christos Tzivanidis, 2018. "Enhancing the Performance of Evacuated and Non-Evacuated Parabolic Trough Collectors Using Twisted Tape Inserts, Perforated Plate Inserts and Internally Finned Absorber," Energies, MDPI, vol. 11(5), pages 1-28, May.
    3. Eleonora Ponticorvo & Mariagrazia Iuliano & Claudia Cirillo & Angelo Maiorino & Ciro Aprea & Maria Sarno, 2022. "Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid," Energies, MDPI, vol. 15(9), pages 1-21, April.
    4. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
    6. Budi Kristiawan & Agung Tri Wijayanta & Koji Enoki & Takahiko Miyazaki & Muhammad Aziz, 2019. "Heat Transfer Enhancement of TiO 2 /Water Nanofluids Flowing Inside a Square Minichannel with a Microfin Structure: A Numerical Investigation," Energies, MDPI, vol. 12(16), pages 1-21, August.
    7. Javed, Samina & Ali, Hafiz Muhammad & Babar, Hamza & Khan, Muhammad Sajid & Janjua, Muhammad Mansoor & Bashir, Muhammad Anser, 2020. "Internal convective heat transfer of nanofluids in different flow regimes: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    8. Marina Tselepi & Costas Prouskas & Dimitrios G. Papageorgiou & Isaac. E. Lagaris & Georgios A. Evangelakis, 2022. "Graphene-Based Phase Change Composite Nano-Materials for Thermal Storage Applications," Energies, MDPI, vol. 15(3), pages 1-12, February.
    9. Arora, Neeti & Gupta, Munish, 2020. "An updated review on application of nanofluids in flat tubes radiators for improving cooling performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Gómez-Villarejo, Roberto & Martín, Elisa I. & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Martínez-Merino, Paloma & Carrillo-Berdugo, Iván & Alcántara, Rodrigo & Fernández-Lo, 2018. "Towards the improvement of the global efficiency of concentrating solar power plants by using Pt-based nanofluids: The internal molecular structure effect," Applied Energy, Elsevier, vol. 228(C), pages 2262-2274.
    11. Miguel Figueiredo & Guido Marseglia & Ana S. Moita & Miguel R. O. Panão & Ana P. C. Ribeiro & Carlo M. Medaglia & António L. N. Moreira, 2020. "Thermofluid Characterization of Nanofluid Spray Cooling Combining Phase Doppler Interferometry with High-Speed Visualization and Time-Resolved IR Thermography," Energies, MDPI, vol. 13(22), pages 1-18, November.
    12. Wang, Xianling & Luo, Liang & Xiang, Jinwei & Zheng, Senlin & Shittu, Samson & Wang, Zhangyuan & Zhao, Xudong, 2021. "A comprehensive review on the application of nanofluid in heat pipe based on the machine learning: Theory, application and prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Shi, Lei & Zhang, Shuai & Arshad, Adeel & Hu, Yanwei & He, Yurong & Yan, Yuying, 2021. "Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    15. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    16. Ghodbane, Mokhtar & Said, Zafar & Hachicha, Ahmed Amine & Boumeddane, Boussad, 2020. "Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids," Renewable Energy, Elsevier, vol. 151(C), pages 43-56.
    17. Pei, Maoqing & Liu, Huawei & Ju, Xinyu & Ju, Xing & Xu, Chao, 2024. "Investigation and optimization of the performance of a spectrum splitting photovoltaic/thermal system using multiple kinds of core-shell nanofluids," Energy, Elsevier, vol. 288(C).
    18. Oveepsa Chakraborty & Sujit Roy & Biplab K. Debnath & Sushant Negi & Marc A. Rosen & Sadegh Safari & Mamdouh El Haj Assad & Rajat Gupta & Biplab Das, 2024. "Energy, exergy, environment and techno-economic analysis of parabolic trough collector: A comprehensive review," Energy & Environment, , vol. 35(2), pages 1118-1181, March.
    19. Mohammad Ghalambaz & S. A. M. Mehryan & Ahmad Hajjar & Mehdi A. Fteiti & Obai Younis & Pouyan Talebizadeh Sardari & Wahiba Yaïci, 2021. "Latent Heat Thermal Storage in Non-Uniform Metal Foam Filled with Nano-Enhanced Phase Change Material," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    20. Tagle-Salazar, Pablo D. & Nigam, K.D.P. & Rivera-Solorio, Carlos I., 2018. "Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids," Renewable Energy, Elsevier, vol. 125(C), pages 334-343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:276-:d:1313567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.