IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6323-d1544378.html
   My bibliography  Save this article

Maximizing the Total Profit of Combined Systems with a Pumped Storage Hydropower Plant and Renewable Energy Sources Using a Modified Slime Mould Algorithm

Author

Listed:
  • Le Chi Kien

    (Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 700000, Vietnam)

  • Ly Huu Pham

    (Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Minh Phuc Duong

    (Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Tan Minh Phan

    (Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

Abstract

This paper examines the effectiveness of a pumped storage hydropower plant (PSHP) when combined with other plants. System 1 examines the contribution of the PSHP to reducing fuel costs for thermal power plants. System 2 examines the optimization of operations for power systems with energy storage and uncertain renewable energies to maximize total profit based on four test system cases: Case 1: neglect the PSHP and consider wind and solar certainty; Case 2: consider the PSHP and wind and solar certainty; Case 3: neglect the PSHP and consider wind and solar uncertainty; and Case 4: consider the PSHP and wind and solar uncertainty. Cases 1 and 2 focus on systems that assume stable power outputs from these renewable energy sources, while Cases 3 and 4 consider the uncertainty surrounding their power output. The presence of a PSHP has a key role in maximizing the system’s total profit. This proves that Case 2, which incorporates a PSHP, achieves a higher total profit than Case 1, which does not include a PSHP. The difference is USD 17,248.60, representing approximately 0.35% for a single day of operation. The total profits for Cases 3 and 4 are USD 5,089,976 and USD 5,100,193.80, respectively. Case 4 surpasses Case 3 by USD 10,217.70, which is about 0.2% of Case 3’s total profit. In particular, the PSHP used in Cases 2 and 4 is a dispatching tool that aims to achieve the highest profit corresponding to the load condition. The PSHP executes its storage function by using low-price electricity at off-peak periods to store water in the reservoir through the pumping mode and discharge water downstream to produce electricity at periods with high electricity prices using the generating mode. As a result, the total profit increases. A modified slime mould algorithm (MSMA) is applied to System 2 after proving its outstanding performance compared to the jellyfish search algorithm (JS), equilibrium optimizer (EO), and slime mould algorithm (SMA) in System 1.

Suggested Citation

  • Le Chi Kien & Ly Huu Pham & Minh Phuc Duong & Tan Minh Phan, 2024. "Maximizing the Total Profit of Combined Systems with a Pumped Storage Hydropower Plant and Renewable Energy Sources Using a Modified Slime Mould Algorithm," Energies, MDPI, vol. 17(24), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6323-:d:1544378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Posso Rivera, Fausto & Zalamea, Javier & Espinoza, Juan L. & Gonzalez, Luis G, 2022. "Sustainable use of spilled turbinable energy in Ecuador: Three different energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Xinyu Wu & Yiyang Wu & Qilin Ying & Bo Yang, 2022. "Research on Dynamic Programming Game Model for Hydropower Stations," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-11, August.
    3. Sanjay Kumar & Vineet Kumar & Nitish Katal & Sanjay Kumar Singh & Sumit Sharma & Pushpendra Singh, 2021. "Multiarea Economic Dispatch Using Evolutionary Algorithms," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-14, September.
    4. Jinjin Gao & Yuan Zheng & Jianming Li & Xiaoming Zhu & Kan Kan, 2018. "Optimal Model for Complementary Operation of a Photovoltaic-Wind-Pumped Storage System," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-9, December.
    5. Phu Trieu Ha & Dao Trong Tran & Tan Minh Phan & Thang Trung Nguyen, 2024. "Maximization of Total Profit for Hybrid Hydro-Thermal-Wind-Solar Power Systems Considering Pumped Storage, Cascaded Systems, and Renewable Energy Uncertainty in a Real Zone, Vietnam," Sustainability, MDPI, vol. 16(15), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanyue Wang & Guohua Fang & Zhenni Wang, 2022. "The Benefit Realization Mechanism of Pumped Storage Power Plants Based on Multi-Dimensional Regulation and Leader-Follower Decision-Making," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Wesseh, Presley K. & Benjamin, Nelson I. & Lin, Boqiang, 2022. "The coordination of pumped hydro storage, electric vehicles, and climate policy in imperfect electricity markets: Insights from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Büyük, Mehmet & İnci, Mustafa, 2023. "Improved drift-free P&O MPPT method to enhance energy harvesting capability for dynamic operating conditions of fuel cells," Energy, Elsevier, vol. 267(C).
    4. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    5. Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
    6. Jannet Jamii & Mohamed Trabelsi & Majdi Mansouri & Mohamed Fouazi Mimouni & Wasfi Shatanawi, 2022. "Non-Linear Programming-Based Energy Management for a Wind Farm Coupled with Pumped Hydro Storage System," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    7. Phu Trieu Ha & Dao Trong Tran & Tan Minh Phan & Thang Trung Nguyen, 2024. "Maximization of Total Profit for Hybrid Hydro-Thermal-Wind-Solar Power Systems Considering Pumped Storage, Cascaded Systems, and Renewable Energy Uncertainty in a Real Zone, Vietnam," Sustainability, MDPI, vol. 16(15), pages 1-19, August.
    8. Sharifian, Yeganeh & Abdi, Hamdi, 2024. "Multi-area economic dispatch problem: Methods, uncertainties, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    9. Khairul Eahsun Fahim & Liyanage C. De Silva & Fayaz Hussain & Hayati Yassin, 2023. "A State-of-the-Art Review on Optimization Methods and Techniques for Economic Load Dispatch with Photovoltaic Systems: Progress, Challenges, and Recommendations," Sustainability, MDPI, vol. 15(15), pages 1-29, August.
    10. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).
    11. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    12. Wesseh, Presley K. & Lin, Boqiang, 2021. "Bulk storage technologies in imperfect electricity markets under time-of-use pricing: Implications for the environment and social welfare," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    13. Mensah, Johnson Herlich Roslee & Santos, Ivan Felipe Silva dos & Raimundo, Danielle Rodrigues & Costa de Oliveira Botan, Maria Cláudia & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio, 2022. "Energy and economic study of using Pumped Hydropower Storage with renewable resources to recover the Furnas reservoir," Renewable Energy, Elsevier, vol. 199(C), pages 320-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6323-:d:1544378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.