IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6300-d1543221.html
   My bibliography  Save this article

Numerical Study and Optimization-Based Sensitivity Analysis of a Vertical-Axis Wind Turbine

Author

Listed:
  • Rabii El Maani

    (Laboratory of Computer and Mathematical Process Engineering (LIPIM), ENSA Khouribga, Sultan Moulay Slimane University, Beni Mellal 25000, Morocco)

  • Bouchaib Radi

    (Laboratory of Engineering Industrial Management and Innovation (LIMII), FST Settat, Hassan First University, Settat 26000, Morocco)

  • Abdelkhalak El Hami

    (Laboratory of Mechanics of Normandie (LMN), INSA Rouen, Normandie University, 76801 St. Etienne de Rouvray, France)

Abstract

This study aims to introduce a new optimization method for designing a vertical-axis wind turbine (VAWT) that dynamically morphs its blades as a function of the tip-speed ratio (TSR) and azimuthal angle. For this purpose, the Darrieus turbine is the subject of a dynamic study under transient aerodynamic loads. By resolving the two-dimensional unsteady incompressible Navier–Stokes equation, the aerodynamic torque is obtained with the k- ϵ realizable turbulence model. A comparison between rotor operation at optimal and lower C p values is possible according to the investigation of flow-field characteristics for a variety of tip-speed ratio values, with experimental results so that a better understanding of the vertical-axis wind turbine’s basic physics is obtained. Then, a multi-objective optimization technique is coupled with ANSYS Workbench to increase the energy generation of VAWT blades by reducing the drag coefficient and maximizing the power coefficient. The input variables were evaluated through a sensitivity analysis, and the most important one was chosen. The analysis results of the best compromise showed that the design methodology’s output is feasible for manufacturing.

Suggested Citation

  • Rabii El Maani & Bouchaib Radi & Abdelkhalak El Hami, 2024. "Numerical Study and Optimization-Based Sensitivity Analysis of a Vertical-Axis Wind Turbine," Energies, MDPI, vol. 17(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6300-:d:1543221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    2. Daróczy, László & Janiga, Gábor & Petrasch, Klaus & Webner, Michael & Thévenin, Dominique, 2015. "Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors," Energy, Elsevier, vol. 90(P1), pages 680-690.
    3. Baghdadi, M. & Elkoush, S. & Akle, B. & Elkhoury, M., 2020. "Dynamic shape optimization of a vertical-axis wind turbine via blade morphing technique," Renewable Energy, Elsevier, vol. 154(C), pages 239-251.
    4. Ramadan, A. & Yousef, K. & Said, M. & Mohamed, M.H., 2018. "Shape optimization and experimental validation of a drag vertical axis wind turbine," Energy, Elsevier, vol. 151(C), pages 839-853.
    5. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    6. Danao, Louis Angelo & Eboibi, Okeoghene & Howell, Robert, 2013. "An experimental investigation into the influence of unsteady wind on the performance of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 107(C), pages 403-411.
    7. Cameron Gerrie & Sheikh Zahidul Islam & Sean Gerrie & Naomi Turner & Taimoor Asim, 2023. "3D CFD Modelling of Performance of a Vertical Axis Turbine," Energies, MDPI, vol. 16(3), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    2. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    4. Lee, Kung-Yen & Tsao, Shao-Hua & Tzeng, Chieh-Wen & Lin, Huei-Jeng, 2018. "Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building," Applied Energy, Elsevier, vol. 209(C), pages 383-391.
    5. Wenxing Hao & Abdulshakur Abdi & Guobiao Wang & Fuzhong Wu, 2023. "Study on the Pitch Angle Effect on the Power Coefficient and Blade Fatigue Load of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(21), pages 1-18, October.
    6. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    7. Baghdadi, M. & Elkoush, S. & Akle, B. & Elkhoury, M., 2020. "Dynamic shape optimization of a vertical-axis wind turbine via blade morphing technique," Renewable Energy, Elsevier, vol. 154(C), pages 239-251.
    8. Wang, Zhenyu & Zhuang, Mei, 2017. "Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios," Applied Energy, Elsevier, vol. 208(C), pages 1184-1197.
    9. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
    10. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method," Energy, Elsevier, vol. 121(C), pages 1-9.
    11. Emejeamara, F.C. & Tomlin, A.S. & Millward-Hopkins, J.T., 2015. "Urban wind: Characterisation of useful gust and energy capture," Renewable Energy, Elsevier, vol. 81(C), pages 162-172.
    12. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    13. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    14. Zhang, Dan & Wu, Zhenglong & Chen, Yaoran & Kuang, Limin & Peng, Yan & Zhou, Dai & Tu, Yu, 2024. "Full-scale vs. scaled aerodynamics of 5-MW offshore VAWTs under pitch motion: A numerical analysis," Applied Energy, Elsevier, vol. 372(C).
    15. Ghazalla, R.A. & Mohamed, M.H. & Hafiz, A.A., 2019. "Synergistic analysis of a Darrieus wind turbine using computational fluid dynamics," Energy, Elsevier, vol. 189(C).
    16. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    17. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    18. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    19. Cheng, Biyi & Yao, Yingxue, 2023. "Machine learning based surrogate model to analyze wind tunnel experiment data of Darrieus wind turbines," Energy, Elsevier, vol. 278(PA).
    20. Eboibi, Okeoghene & Danao, Louis Angelo M. & Howell, Robert J., 2016. "Experimental investigation of the influence of solidity on the performance and flow field aerodynamics of vertical axis wind turbines at low Reynolds numbers," Renewable Energy, Elsevier, vol. 92(C), pages 474-483.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6300-:d:1543221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.