IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6097-d1536148.html
   My bibliography  Save this article

Application of Mixed-Mode Ventilation to Enhance Indoor Air Quality and Energy Efficiency in School Buildings

Author

Listed:
  • Christopher Otoo

    (Department of Electrical Engineering and Energy Technology, University of Vaasa, P.O. Box 700, 65200 Vaasa, Finland)

  • Tao Lu

    (Department of Electrical Engineering and Energy Technology, University of Vaasa, P.O. Box 700, 65200 Vaasa, Finland)

  • Xiaoshu Lü

    (Department of Electrical Engineering and Energy Technology, University of Vaasa, P.O. Box 700, 65200 Vaasa, Finland
    Department of Civil Engineering, Aalto University, P.O. Box 11000, 02150 Espoo, Finland)

Abstract

Indoor air quality and energy efficiency are instrumental aspects of school facility design and construction, as they directly affect the physical well-being, comfort, and academic output of both pupils and staff. The challenge of balancing the need for adequate ventilation to enhance indoor air quality with the goal of reducing energy consumption has long been a topic of debate. The implementation of mixed-mode ventilation systems with automated controls presents a promising solution to address this issue. However, a comprehensive literature review on this subject is still missing. To address this gap, this review examines the potential application of mixed-mode ventilation systems as a solution to attaining improved energy savings without compromising indoor air quality and thermal comfort in educational environments. Mixed-mode ventilation systems, which combine natural ventilation and mechanical ventilation, provide the versatility to alternate between or merge both methods based on real-time indoor and outdoor environmental conditions. By analyzing empirical studies, case studies, and theoretical models, this review investigates the efficacy of mixed-mode ventilation systems in minimizing energy use and enhancing indoor air quality. Essential elements such as operable windows, sensors, and sophisticated control technologies are evaluated to illustrate how mixed-mode ventilation systems dynamically optimize ventilation to sustain comfortable and healthy indoor climates. This paper further addresses the challenges linked to the design and implementation of mixed-mode ventilation systems, including complexities in control and the necessity for climate-adaptive strategies. The findings suggest that mixed-mode ventilation systems can considerably lower heating, ventilation, and air conditioning energy usage, with energy savings ranging from 20% to 60% across various climate zones, while also enhancing indoor air quality with advanced control systems and data-driven control strategies. In conclusion, mixed-mode ventilation systems offer a promising approach for school buildings to achieve energy efficiency and effective ventilation without sacrificing indoor environment quality.

Suggested Citation

  • Christopher Otoo & Tao Lu & Xiaoshu Lü, 2024. "Application of Mixed-Mode Ventilation to Enhance Indoor Air Quality and Energy Efficiency in School Buildings," Energies, MDPI, vol. 17(23), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6097-:d:1536148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6097/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6097/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su, Wei & Ai, Zhengtao & Liu, Jing & Yang, Bin & Wang, Faming, 2023. "Maintaining an acceptable indoor air quality of spaces by intentional natural ventilation or intermittent mechanical ventilation with minimum energy use," Applied Energy, Elsevier, vol. 348(C).
    2. Pollozhani, Fatos & McLeod, Robert S. & Schwarzbauer, Christian & Hopfe, Christina J., 2024. "Assessing school ventilation strategies from the perspective of health, environment, and energy," Applied Energy, Elsevier, vol. 353(PA).
    3. Sandra N. Jendrossek & Lukas A. Jurk & Kirsten Remmers & Yunus E. Cetin & Wolfgang Sunder & Martin Kriegel & Petra Gastmeier, 2023. "The Influence of Ventilation Measures on the Airborne Risk of Infection in Schools: A Scoping Review," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    4. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Spliethoff, Hartmut & Rank, Ernst, 2014. "School building energy performance and classroom air environment implemented with the heat recovery heat pump and displacement ventilation system," Applied Energy, Elsevier, vol. 114(C), pages 58-68.
    5. Lichen Su & Jinlong Ouyang & Li Yang, 2023. "Mixed-Mode Ventilation Based on Adjustable Air Velocity for Energy Benefits in Residential Buildings," Energies, MDPI, vol. 16(6), pages 1-17, March.
    6. Huyen Do & Kristen S. Cetin, 2022. "Mixed-Mode Ventilation in HVAC System for Energy and Economic Benefits in Residential Buildings," Energies, MDPI, vol. 15(12), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    2. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2016. "Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design," Applied Energy, Elsevier, vol. 182(C), pages 625-633.
    3. Xi, Yan-Ao-Ming & Li, Yun-Ze & Chen, Ya-Hui & Jiang, Hai-Hao & Huang, Zhao-Bin, 2024. "Energy demand and carbon emission analyses of a solar-driven domestic regional environment mobile robot as household auxiliary heating and cooling method," Applied Energy, Elsevier, vol. 371(C).
    4. Su, Wei & Ai, Zhengtao & Liu, Jing & Yang, Bin & Wang, Faming, 2023. "Maintaining an acceptable indoor air quality of spaces by intentional natural ventilation or intermittent mechanical ventilation with minimum energy use," Applied Energy, Elsevier, vol. 348(C).
    5. Yue Yuan & Jisoo Shim & Seungkeon Lee & Doosam Song & Joowook Kim, 2020. "Prediction for Overheating Risk Based on Deep Learning in a Zero Energy Building," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    6. Wang, Yang & Kuckelkorn, Jens & Zhao, Fu-Yun & Spliethoff, Hartmut & Lang, Werner, 2017. "A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1303-1319.
    7. Wadud, Zia & Royston, Sarah & Selby, Jan, 2019. "Modelling energy demand from higher education institutions: A case study of the UK," Applied Energy, Elsevier, vol. 233, pages 816-826.
    8. Sergio A. Chillon & Mikel Millan & Iñigo Aramendia & Unai Fernandez-Gamiz & Ekaitz Zulueta & Xabier Mendaza-Sagastizabal, 2021. "Natural Ventilation Characterization in a Classroom under Different Scenarios," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    9. Michele Zinzi & Francesca Pagliaro & Stefano Agnoli & Fabio Bisegna & Domenico Iatauro, 2021. "On the Built-Environment Quality in Nearly Zero-Energy Renovated Schools: Assessment and Impact of Passive Strategies," Energies, MDPI, vol. 14(10), pages 1-18, May.
    10. Ekpo Otu & Kirsti Ashworth & Emmanuel Tsekleves & Aniebietabasi Ackley, 2024. "Empowering London Primary School Communities to Know and Tackle Air Pollution Exposure," Sustainability, MDPI, vol. 16(17), pages 1-29, August.
    11. Shi, W.X. & Ji, J. & Sun, J.H. & Lo, S.M. & Li, L.J. & Yuan, X.Y., 2014. "Influence of staircase ventilation state on the airflow and heat transfer of the heated room on the middle floor of high rise building," Applied Energy, Elsevier, vol. 119(C), pages 173-180.
    12. Wang, Yang & Du, Jiangtao & Kuckelkorn, Jens M. & Kirschbaum, Alexander & Gu, Xin & Li, Daoliang, 2019. "Identifying the feasibility of establishing a passive house school in central Europe: An energy performance and carbon emissions monitoring study in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Lichen Su & Jinlong Ouyang & Li Yang, 2023. "Mixed-Mode Ventilation Based on Adjustable Air Velocity for Energy Benefits in Residential Buildings," Energies, MDPI, vol. 16(6), pages 1-17, March.
    14. Li Yang, 2024. "Advanced Technologies in HVAC Equipment and Thermal Environment for Building," Energies, MDPI, vol. 17(21), pages 1-2, November.
    15. Wang, Yang & Shukla, Ashish & Liu, Shuli, 2017. "A state of art review on methodologies for heat transfer and energy flow characteristics of the active building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1102-1116.
    16. Wang, Cheng & Zhu, Ye & Guo, Xiaofeng, 2019. "Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6097-:d:1536148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.