IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5985-d1531689.html
   My bibliography  Save this article

Application of Squirrel Cage Generator Control System Utilizing Direct Torque Control Method as the Shaft Generator in a Seagoing Ship

Author

Listed:
  • Maciej Kozak

    (Faculty of Mechatronics and Electrical Engineering, Maritime University of Szczecin, Wały Chrobrego 1-2, 70-500 Szczecin, Poland)

  • Roman Bronsky

    (Faculty of Mechatronics and Electrical Engineering, Maritime University of Szczecin, Wały Chrobrego 1-2, 70-500 Szczecin, Poland)

  • Marcin Matuszak

    (Faculty of Mechanical Engineering, Maritime University of Szczecin, Wały Chrobrego 1-2, 70-500 Szczecin, Poland)

Abstract

The squirrel cage induction generator or SCIG (Squirrel Cage Induction Generator) belongs to the family of induction machines, which are currently used as the most common electrical machines. The use of power electronic converter systems along with advanced control vector algorithms allows for the implementation of the effective operation of squirrel cage generators in various conditions. Up to now, there are a few practical realizations of squirrel cage generators, which are installed on board the vessels; mostly, these generators act as shaft generators, and it originates from the rules that require self-excitement of main electrical generators, acting as an immediate ready-to-use voltage source. In this article, we present a solution that utilizes an SCIG that operates with varying rotational speed as a shaft generator but can also act as an emergency propeller drive in case of main combustion engine failure. The main achievement of the presented work was the creation of a control table prepared for real-time software of the machine-side inverter. The data for the table were collected during the experimental research, and such a setup allowed us to use a DTC-controlled SCIG as a generator that rotated with variable speed and under changing load.

Suggested Citation

  • Maciej Kozak & Roman Bronsky & Marcin Matuszak, 2024. "Application of Squirrel Cage Generator Control System Utilizing Direct Torque Control Method as the Shaft Generator in a Seagoing Ship," Energies, MDPI, vol. 17(23), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5985-:d:1531689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ion, Catalin Petrea & Marinescu, Corneliu, 2013. "Three-phase induction generators for single-phase power generation: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 73-80.
    2. Francesco Cutrignelli & Gianmarco Saponaro & Michele Stefanizzi & Marco Torresi & Sergio Mario Camporeale, 2023. "Study of the Effects of Regenerative Braking System on a Hybrid Diagnostic Train," Energies, MDPI, vol. 16(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    2. Ivan Župan & Viktor Šunde & Željko Ban & Branimir Novoselnik, 2023. "An Energy Flow Control Algorithm of Regenerative Braking for Trams Based on Pontryagin’s Minimum Principle," Energies, MDPI, vol. 16(21), pages 1-20, October.
    3. Panupon Trairat & Sakda Somkun & Tanakorn Kaewchum & Tawat Suriwong & Pisit Maneechot & Teerapon Panpho & Wikarn Wansungnern & Sathit Banthuek & Bongkot Prasit & Tanongkiat Kiatsiriroat, 2023. "Grid Integration of Livestock Biogas Using Self-Excited Induction Generator and Spark-Ignition Engine," Energies, MDPI, vol. 16(13), pages 1-23, June.
    4. Ying Wang & Ya Guo & Xiaoqiang Chen & Yunpeng Zhang & Dong Jin & Jing Xie, 2023. "Research on the Energy Management Strategy of a Hybrid Energy Storage Type Railway Power Conditioner System," Energies, MDPI, vol. 16(15), pages 1-16, August.
    5. Elzio Metello & Fernando Bento Silva & Raul Vitor Arantes Monteiro & José Mateus Rondina & Geraldo Caixeta Guimarães, 2024. "Study of a Self-Excited Three-Phase Induction Generator Operating as a Single-Phase Induction Generator for Use in Rotating Excitation Systems for Synchronous Generators," Energies, MDPI, vol. 17(16), pages 1-22, August.
    6. Igor Maciejewski & Sebastian Pecolt & Andrzej Błażejewski & Bartosz Jereczek & Tomasz Krzyzynski, 2024. "Experimental Study of the Energy Regenerated by a Horizontal Seat Suspension System under Random Vibration," Energies, MDPI, vol. 17(17), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5985-:d:1531689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.