IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5782-d1524637.html
   My bibliography  Save this article

Numerical Investigation of Combustion and Emission Characteristics of the Single-Cylinder Diesel Engine Fueled with Diesel-Ammonia Mixture

Author

Listed:
  • Ali

    (Graduate School of Mechanical Engineering, University of Ulsan, DaeHak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea)

  • Ocktaeck Lim

    (School of Mechanical Engineering, University of Ulsan, DaeHak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea)

Abstract

This study proposes a dual-fuel approach combining diesel and ammonia in a single-cylinder compression ignition engine to reduce harmful emissions from internal combustion. Diesel is directly injected into the combustion chamber, while ammonia is introduced through the intake manifold with intake air. In this study, injection timing and the percentage of ammonia energy fraction was varied. A computational fluid dynamics (CFD) model simulates the combustion and emission processes to assess the impact of varying diesel injection timings and ammonia energy contributions. Findings indicate that as ammonia content increases, the engine experiences reductions in peak in-cylinder pressure, temperature, heat release rate, as well as overall efficiency and power output. Emission results suggest that greater ammonia usage leads to a reduction in soot, carbon monoxide, carbon dioxide, and unburned hydrocarbons, though a slight increase in nitrogen oxides emissions is observed. This analysis supports ammonia’s potential as a low-emission alternative fuel in future compression ignition engines.

Suggested Citation

  • Ali & Ocktaeck Lim, 2024. "Numerical Investigation of Combustion and Emission Characteristics of the Single-Cylinder Diesel Engine Fueled with Diesel-Ammonia Mixture," Energies, MDPI, vol. 17(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5782-:d:1524637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5782/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5782/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Arun Teja Doppalapudi & Abul Kalam Azad & Mohammad Masud Kamal Khan, 2023. "Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine," Energies, MDPI, vol. 16(6), pages 1-18, March.
    3. Jena, Ashutosh & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2022. "Optical and computational investigations of the effect of Spray-Swirl interactions on autoignition and soot formation in a compression ignition engine fuelled by Diesel, dieseline and diesohol," Applied Energy, Elsevier, vol. 324(C).
    4. Halis, Serdar & Kocakulak, Tolga, 2024. "RSM based optimization of lambda and mixed fuel concentration parameters of an LTC mode engine," Energy, Elsevier, vol. 306(C).
    5. Xu, Changwei & Nie, Wen & Peng, Huitian & Zhang, Shaobo & Liu, Fei & Yi, Shixing & Cha, Xingpeng & Mwabaima, Felicie Ilele, 2023. "Numerical simulation of the dynamic wetting of coal dust by spray droplets," Energy, Elsevier, vol. 270(C).
    6. Mark Treacy & Leilei Xu & Hesameddin Fatehi & Ossi Kaario & Xue-Song Bai, 2024. "Performance of a Methanol-Fueled Direct-Injection Compression-Ignition Heavy-Duty Engine under Low-Temperature Combustion Conditions," Energies, MDPI, vol. 17(17), pages 1-14, August.
    7. Hamid, M. Fadzli & Idroas, M. Yusof & Mazlan, M. & Sa'ad, S. & Teoh, Y.H. & Che Mat, S. & Miskam, M.A. & Abdullah, M.K., 2022. "Methods for improving the in-cylinder airflow characteristics for sustainable transportation using fuels with higher viscosity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Xu, Leilei & Treacy, Mark & Zhang, Yan & Aziz, Amir & Tuner, Martin & Bai, Xue-Song, 2022. "Comparison of efficiency and emission characteristics in a direct-injection compression ignition engine fuelled with iso-octane and methanol under low temperature combustion conditions," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5782-:d:1524637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.