IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5686-d1520555.html
   My bibliography  Save this article

Fault Diagnosis Method for Hydropower Station Measurement and Control System Based on ISSA-VMD and 1DCNN-BiLSTM

Author

Listed:
  • Lin Wang

    (Xiluodu Hydropower Plant, China Yangtze Power Co., Ltd., Zhaotong 657300, China)

  • Fangqing Zhang

    (School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
    Wuhan Relabo Technology Co., Ltd., Wuhan 430072, China)

  • Jiefei Wang

    (Xiluodu Hydropower Plant, China Yangtze Power Co., Ltd., Zhaotong 657300, China)

  • Gang Ren

    (Xiluodu Hydropower Plant, China Yangtze Power Co., Ltd., Zhaotong 657300, China)

  • Dengxian Wang

    (Xiluodu Hydropower Plant, China Yangtze Power Co., Ltd., Zhaotong 657300, China)

  • Ling Gao

    (Xiluodu Hydropower Plant, China Yangtze Power Co., Ltd., Zhaotong 657300, China)

  • Xingyu Ming

    (Xiluodu Hydropower Plant, China Yangtze Power Co., Ltd., Zhaotong 657300, China)

Abstract

Sudden failures of measurement and control circuits in hydropower plants may lead to unplanned shutdowns of generating units. Therefore, the diagnosis of hydropower station measurement and control system poses a great challenge. Existing fault diagnosis methods suffer from long fault identification time, inaccurate positioning, and low diagnostic efficiency. In order to improve the accuracy of fault diagnosis, this paper proposes a fault diagnosis method for hydropower station measurement and control system that combines variational modal decomposition (VMD), Pearson’s correlation coefficient, a one-dimensional convolutional neural network, and a bi-directional long and short-term memory network (1DCNN-BiLSTM). Firstly, the VMD parameters are optimised by the Improved Sparrow Search Algorithm (ISSA). Secondly, signal decomposition of the original fault signals is carried out by using ISSA-VMD, and meanwhile, the optimal intrinsic modal components (IMFs) are screened out by using Pearson’s correlation coefficient, and the optimal set of components is subjected to signal reconstruction in order to obtain the new signal sequences. Then, the 1DCNN-BiLSTM-based fault diagnosis model is proposed, which achieves accurate diagnosis of the faults of hydropower station measurement and control system. Finally, experimental verification reveals that, in comparison with other methods such as 1DCNN, BiLSTM, ELM, BP neural network, SVM, and DBN, the proposed approach in this paper achieves an exceptionally high average recognition accuracy of 99.8% in both simulation and example analysis. Additionally, it demonstrates faster convergence speed, indicating not only its superior diagnostic precision but also its high application value.

Suggested Citation

  • Lin Wang & Fangqing Zhang & Jiefei Wang & Gang Ren & Dengxian Wang & Ling Gao & Xingyu Ming, 2024. "Fault Diagnosis Method for Hydropower Station Measurement and Control System Based on ISSA-VMD and 1DCNN-BiLSTM," Energies, MDPI, vol. 17(22), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5686-:d:1520555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    2. Xu, Zifei & Mei, Xuan & Wang, Xinyu & Yue, Minnan & Jin, Jiangtao & Yang, Yang & Li, Chun, 2022. "Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors," Renewable Energy, Elsevier, vol. 182(C), pages 615-626.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Junyu & Yang, Yulai & Li, He & Wang, Jiang & Tang, Aimin & Shan, Daiwei & Huang, Bangkui, 2024. "A hybrid deep learning model towards fault diagnosis of drilling pump," Applied Energy, Elsevier, vol. 372(C).
    2. Bai, Yulong & Liu, Ming-De & Ding, Lin & Ma, Yong-Jie, 2021. "Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition," Applied Energy, Elsevier, vol. 301(C).
    3. Li, Qingyang & Wang, Guosong & Wu, Xinrong & Gao, Zhigang & Dan, Bo, 2024. "Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN," Energy, Elsevier, vol. 299(C).
    4. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Yuanzhuo Du & Kun Zhang & Qianzhi Shao & Zhe Chen, 2023. "A Short-Term Prediction Model of Wind Power with Outliers: An Integration of Long Short-Term Memory, Ensemble Empirical Mode Decomposition, and Sample Entropy," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    6. Guoqing An & Ziyao Jiang & Libo Chen & Xin Cao & Zheng Li & Yuyang Zhao & Hexu Sun, 2021. "Ultra Short-Term Wind Power Forecasting Based on Sparrow Search Algorithm Optimization Deep Extreme Learning Machine," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    7. Guangqi Liang & Dongxiao Niu & Yi Liang, 2020. "Core Competitiveness Evaluation of Clean Energy Incubators Based on Matter-Element Extension Combined with TOPSIS and KPCA-NSGA-II-LSSVM," Sustainability, MDPI, vol. 12(22), pages 1-26, November.
    8. Yu, Enbo & Xu, Guoji & Han, Yan & Li, Yongle, 2022. "An efficient short-term wind speed prediction model based on cross-channel data integration and attention mechanisms," Energy, Elsevier, vol. 256(C).
    9. Wei Sun & Qi Gao, 2019. "Short-Term Wind Speed Prediction Based on Variational Mode Decomposition and Linear–Nonlinear Combination Optimization Model," Energies, MDPI, vol. 12(12), pages 1-27, June.
    10. Wenlong Fu & Kai Wang & Jianzhong Zhou & Yanhe Xu & Jiawen Tan & Tie Chen, 2019. "A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    11. Xie, Tianming & Xu, Qifa & Jiang, Cuixia & Lu, Shixiang & Wang, Xiangxiang, 2023. "The fault frequency priors fusion deep learning framework with application to fault diagnosis of offshore wind turbines," Renewable Energy, Elsevier, vol. 202(C), pages 143-153.
    12. Li, Guohui & Yin, Shibo & Yang, Hong, 2022. "A novel crude oil prices forecasting model based on secondary decomposition," Energy, Elsevier, vol. 257(C).
    13. Guangyu Qin & Qingyou Yan & Jingyao Zhu & Chuanbo Xu & Daniel M. Kammen, 2021. "Day-Ahead Wind Power Forecasting Based on Wind Load Data Using Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    14. Wang, Bingqing & Li, Yongping & Huang, Guohe & Gao, Pangpang & Liu, Jing & Wen, Yizhuo, 2023. "Development of an integrated BLSVM-MFA method for analyzing renewable power-generation potential under climate change: A case study of Xiamen," Applied Energy, Elsevier, vol. 337(C).
    15. Neeraj Bokde & Andrés Feijóo & Nadhir Al-Ansari & Siyu Tao & Zaher Mundher Yaseen, 2020. "The Hybridization of Ensemble Empirical Mode Decomposition with Forecasting Models: Application of Short-Term Wind Speed and Power Modeling," Energies, MDPI, vol. 13(7), pages 1-23, April.
    16. Kirill A. Bashmur & Oleg A. Kolenchukov & Vladimir V. Bukhtoyarov & Vadim S. Tynchenko & Sergei O. Kurashkin & Elena V. Tsygankova & Vladislav V. Kukartsev & Roman B. Sergienko, 2022. "Biofuel Technologies and Petroleum Industry: Synergy of Sustainable Development for the Eastern Siberian Arctic," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    17. Meng, Anbo & Chen, Shun & Ou, Zuhong & Ding, Weifeng & Zhou, Huaming & Fan, Jingmin & Yin, Hao, 2022. "A hybrid deep learning architecture for wind power prediction based on bi-attention mechanism and crisscross optimization," Energy, Elsevier, vol. 238(PB).
    18. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.
    19. Guo, Honggang & Wang, Jianzhou & Li, Zhiwu & Jin, Yu, 2022. "A multivariable hybrid prediction system of wind power based on outlier test and innovative multi-objective optimization," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5686-:d:1520555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.