IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5612-d1517598.html
   My bibliography  Save this article

Research on the Internal Flow and Cavitation Characteristics of Petal Bionic Nozzles Based on Methanol Low-Pressure Injection

Author

Listed:
  • Yuejian Zhu

    (School of Traffic and Vehicle Engineering, Shandong University of Technology, Zibo 255022, China)

  • Yanxia Wang

    (School of Traffic and Vehicle Engineering, Shandong University of Technology, Zibo 255022, China)

  • Yannian Wang

    (School of Traffic and Vehicle Engineering, Shandong University of Technology, Zibo 255022, China)

Abstract

This paper aims to discuss the internal flow and cavitation characteristics of petal bionic nozzle holes under different injection pressures to improve the atomization effect of methanol. The FLUENT (v2022 R1) software is used for simulation. The Schnerr-Sauer cavitation model in the Mixture multiphase flow model is adopted, considering the evaporation and condensation processes of methanol fuel to accurately simulate cavitation and internal flow performance. The new nozzle hole is compared with the ordinary circular nozzle hole for analysis to ensure research reliability. The results show that the cavitation of the petal bionic nozzle hole mainly occurs at the outlet, which can enhance the atomization effect. In terms of turbulent kinetic energy, the internal turbulent kinetic energy of the petal bionic nozzle hole is greater under the same pressure. At 1 MPa, its outlet turbulent kinetic energy is 38.37 m 2 /s 2 , which is about 2.3 times that of the ordinary circular nozzle hole. When the injection pressure is from 0.2 MPa to 1 MPa, the maximum temperature of the ordinary circular nozzle hole increases by about 33.4%, while that of the petal bionic nozzle hole only increases by 12.3%. The intensity of internal convection and vortex is significantly reduced. The outlet velocity and turbulent kinetic energy distribution of the petal bionic nozzle hole are more uniform. In general, the internal flow performance of the petal bionic nozzle hole is more stable, which is beneficial to the collision and fragmentation of droplets and has better uniformity of droplet distribution. It has a positive effect on improving the atomization effect of methanol injection in the intake port of methanol-diesel dual-fuel engines.

Suggested Citation

  • Yuejian Zhu & Yanxia Wang & Yannian Wang, 2024. "Research on the Internal Flow and Cavitation Characteristics of Petal Bionic Nozzles Based on Methanol Low-Pressure Injection," Energies, MDPI, vol. 17(22), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5612-:d:1517598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca Marchitto & Luigi De Simio & Sabato Iannaccone & Vincenzo Pennino & Nunzio Altieri, 2024. "Retrofit of a Marine Engine to Dual-Fuel Methane–Diesel: Experimental Analysis of Performance and Exhaust Emission with Continuous and Phased Methane Injection Systems," Energies, MDPI, vol. 17(17), pages 1-23, August.
    2. Yu, Shenghao & Yin, Bifeng & Bi, Qinsheng & Chen, Chen & Jia, Hekun, 2021. "Experimental and numerical investigation on inner flow and spray characteristics of elliptical GDI injectors with large aspect ratio," Energy, Elsevier, vol. 224(C).
    3. Huabing Wen & Yue Yu & Jingrui Li & Changchun Xu & Haiguo Jing & Jianhua Shen, 2023. "Numerical Investigation on the Influence of Injection Location and Injection Strategy on a High-Pressure Direct Injection Diesel/Methanol Dual-Fuel Engine," Energies, MDPI, vol. 16(11), pages 1-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Mengzhao & Park, Suhan, 2023. "Predictions and analysis of flash boiling spray characteristics of gasoline direct injection injectors based on optimized machine learning algorithm," Energy, Elsevier, vol. 262(PA).
    2. Yu, Shenghao & Yin, Bifeng & Chen, Chen & Jia, Hekun & Wang, Weifeng, 2023. "A comparative analysis of internal flow and spray characteristics in triangular orifices with diesel and biodiesel," Energy, Elsevier, vol. 285(C).
    3. Zhang, Qing & Gao, Ya & Chu, Miaoqi & Chen, Pice & Zhang, Qingteng & Wang, Jin, 2023. "Enhanced energy conversion efficiency promoted by cavitation in gasoline direct injection," Energy, Elsevier, vol. 265(C).
    4. Chang, Ke & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu & Xin, Gu & Meng, Hao, 2022. "Numerical investigation of the combined effect of injection angle and injection pressure in a gasoline direct injection rotary engine," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5612-:d:1517598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.