IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5608-d1517475.html
   My bibliography  Save this article

Characteristics of Supercritical CO 2 Non-Mixed Phase Replacement in Intraformational Inhomogeneous Low-Permeability Reservoirs

Author

Listed:
  • Mingxi Liu

    (Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, China)

  • Kaoping Song

    (Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, China)

  • Longxin Wang

    (Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, China)

  • Hong Fu

    (Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, China)

  • Tianhao Wang

    (Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, China)

Abstract

Under the influence of the sedimentation process, the phenomenon of intraformational non-homogeneity is widely observed in low-permeability reservoirs. In the development process of water and gas replacement (WAG), the transport law of water and gas and the distribution of residual oil are seriously affected by the non-homogeneity of reservoir properties. In this paper, a study on two types of reservoirs with certain lengths and thicknesses is carried out, and a reasonable development method is proposed according to the characteristics of each reservoir. Firstly, through indoor physical simulation experiments combined with low-field nuclear magnetic resonance scanning (NMR), this study investigates the influence of injection rate and core length on the double-layer low-permeability inhomogeneous core replacement and pore throat mobilization characteristics. Then, a two-layer inhomogeneous low-permeability microscopic model is designed to investigate the model’s replacement and pore throat mobilization characteristics under the combined influence of rhythmites, gravity, the injection rate, etc. Finally, based on the results of the core replacement and numerical simulation, a more reasonable development method is proposed for each type of reservoir. The results show that for inhomogeneous cores of a certain length, the WAG process can significantly increase the injection pressure and effectively seal the high-permeability layer through the Jamin effect to improve the degree of recovery. Moreover, for positive and reverse rhythm reservoirs of a certain thickness, the injection rate can be reduced according to the physical properties of the reservoir, and the gravity overburden phenomenon of the gas is used to achieve the effective development of the upper layers. The effect of the development of a positive rhythm reservoir therefore improved significantly. These findings provide data support for improving the development effectiveness of CO 2 in low-permeability inhomogeneous reservoirs and emphasize the importance of the influence of multiple factors, such as injection flow rate, gravity, and rhythm, in CO 2 replacement.

Suggested Citation

  • Mingxi Liu & Kaoping Song & Longxin Wang & Hong Fu & Tianhao Wang, 2024. "Characteristics of Supercritical CO 2 Non-Mixed Phase Replacement in Intraformational Inhomogeneous Low-Permeability Reservoirs," Energies, MDPI, vol. 17(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5608-:d:1517475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manfroni, Michele & Bukkens, Sandra G.F. & Giampietro, Mario, 2022. "Securing fuel demand with unconventional oils: A metabolic perspective," Energy, Elsevier, vol. 261(PB).
    2. Jiang, Jieyun & Rui, Zhenhua & Hazlett, Randy & Lu, Jun, 2019. "An integrated technical-economic model for evaluating CO2 enhanced oil recovery development," Applied Energy, Elsevier, vol. 247(C), pages 190-211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    2. Shenghao Feng & Xiujian Peng & Philip Adams, 2021. "Energy and Economic Implications of Carbon Neutrality in China -- A Dynamic General Equilibrium Analysis," Centre of Policy Studies/IMPACT Centre Working Papers g-318, Victoria University, Centre of Policy Studies/IMPACT Centre.
    3. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    4. Abdoli, B. & Hooshmand, F. & MirHassani, S.A., 2023. "A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem," Applied Energy, Elsevier, vol. 338(C).
    5. Zhang, Yingnan & Li, Shujun & Dou, Xiangji & Wang, Sen & He, Yanfeng & Feng, Qihong, 2023. "Molecular insights into the natural gas regulating tight oil movability," Energy, Elsevier, vol. 270(C).
    6. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    7. Aysylu Askarova & Aliya Mukhametdinova & Strahinja Markovic & Galiya Khayrullina & Pavel Afanasev & Evgeny Popov & Elena Mukhina, 2023. "An Overview of Geological CO 2 Sequestration in Oil and Gas Reservoirs," Energies, MDPI, vol. 16(6), pages 1-34, March.
    8. Becerra-Fernandez, Mauricio & Cosenz, Federico & Dyner, Isaac, 2020. "Modeling the natural gas supply chain for sustainable growth policy," Energy, Elsevier, vol. 205(C).
    9. Liu, Yueliang & Rui, Zhenhua & Yang, Tao & Dindoruk, Birol, 2022. "Using propanol as an additive to CO2 for improving CO2 utilization and storage in oil reservoirs," Applied Energy, Elsevier, vol. 311(C).
    10. Chen, Long & Xu, Guiyin & Rui, Zhenhua & Alshawabkeh, Akram N., 2019. "Demonstration of a feasible energy-water-environment nexus: Waste sulfur dioxide for water treatment," Applied Energy, Elsevier, vol. 250(C), pages 1011-1022.
    11. Xue, Zhenqian & Ma, Haoming & Wei, Yizheng & Wu, Wei & Sun, Zhe & Chai, Maojie & Zhang, Chi & Chen, Zhangxin, 2024. "Integrated technological and economic feasibility comparisons of enhanced geothermal systems associated with carbon storage," Applied Energy, Elsevier, vol. 359(C).
    12. Christiano B. Peres & Pedro M. R. Resende & Leonel J. R. Nunes & Leandro C. de Morais, 2022. "Advances in Carbon Capture and Use (CCU) Technologies: A Comprehensive Review and CO 2 Mitigation Potential Analysis," Clean Technol., MDPI, vol. 4(4), pages 1-15, November.
    13. Wang, Zhengxu & Gao, Deli & Diao, Binbin & Zhang, Wei, 2020. "The influence of casing properties on performance of radio frequency heating for oil sands recovery," Applied Energy, Elsevier, vol. 261(C).
    14. Albaity, Mohamed & Shah, Syed Faisal & Al-Tamimi, Hussein A.Hassan & Rahman, Mahfuzur & Thangavelu, Shanmugam, 2023. "Country risk and bank returns: Evidence from MENA countries," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    15. Zhang, Xin & Liao, Qi & Wang, Qiang & Wang, Limin & Qiu, Rui & Liang, Yongtu & Zhang, Haoran, 2021. "How to promote zero-carbon oilfield target? A technical-economic model to analyze the economic and environmental benefits of Recycle-CCS-EOR project," Energy, Elsevier, vol. 225(C).
    16. Guo, Tiankui & Tang, Songjun & Sun, Jiang & Gong, Facheng & Liu, Xiaoqiang & Qu, Zhanqing & Zhang, Wei, 2020. "A coupled thermal-hydraulic-mechanical modeling and evaluation of geothermal extraction in the enhanced geothermal system based on analytic hierarchy process and fuzzy comprehensive evaluation," Applied Energy, Elsevier, vol. 258(C).
    17. Farajzadeh, R. & Eftekhari, A.A. & Dafnomilis, G. & Lake, L.W. & Bruining, J., 2020. "On the sustainability of CO2 storage through CO2 – Enhanced oil recovery," Applied Energy, Elsevier, vol. 261(C).
    18. Ajoma, Emmanuel & Saira, & Sungkachart, Thanarat & Ge, Jiachao & Le-Hussain, Furqan, 2020. "Water-saturated CO2 injection to improve oil recovery and CO2 storage," Applied Energy, Elsevier, vol. 266(C).
    19. Oghare Victor Ogidiama & Tariq Shamim, 2021. "Assessment of CO2 capture technologies for CO2 utilization in enhanced oil recovery," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 432-444, June.
    20. Yanqing Wang & Liang Zhang & Shaoran Ren & Bo Ren & Bailian Chen & Jun Lu, 2020. "Identification of potential CO2 leakage pathways and mechanisms in oil reservoirs using fault tree analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 331-346, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5608-:d:1517475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.