IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5594-d1517267.html
   My bibliography  Save this article

The Gasification and Pyrolysis of Biomass Using a Plasma System

Author

Listed:
  • Vladimir E. Messerle

    (The Institute of Combustion Problems of the Ministry of Science and High Education of Kazakhstan, Almaty 050012, Kazakhstan
    Combustion Problems Institute, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

  • Alexandr B. Ustimenko

    (The Institute of Combustion Problems of the Ministry of Science and High Education of Kazakhstan, Almaty 050012, Kazakhstan
    Combustion Problems Institute, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

  • Oleg A. Lavrichshev

    (Combustion Problems Institute, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

  • Marina K. Nugman

    (Combustion Problems Institute, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

Abstract

This research paper analyzes the use of plasma technology to process biomass in the form of dried, mixed animal manure (dung containing 30% moisture). The irrational use of manure as well as huge quantities of it can negatively impact the environment. In comparison to biomass fermentation, the plasma processing of manure can greatly enhance the production of fuel gas, primarily synthesis gas (CO + H 2 ). The organic part of dung, including the moisture, is represented by carbon, hydrogen, and oxygen with a total concentration of 95.21%, while the mineral part is only 4.79%. A numerical analysis of dung plasma gasification and pyrolysis was conducted using the thermodynamic code TERRA. For 300–3000 K and 0.1 MPa pressure, the dung gasification and pyrolysis were calculated with 100% dung + 25% air and 100% dung + 25% nitrogen, respectively. Calculations were performed to determine the specific energy consumption of the process, the composition of the products of gasification, and the extent of the carbon gasification. At 1500 K, the dung gasification and pyrolysis consumed 1.28 and 1.33 kWh/kg of specific energy, respectively. A direct-current plasma torch with a power rating of 70 kW and a plasma reactor with a dung processing capacity of 50 kg/h were used for the dung processing experiments. The plasma reactor consumed 1.5 and 1.4 kWh/kg when pyrolyzing and gasifying the dung. A maximum temperature of 1887 K was reached in the reactor. The plasma pyrolysis of dung and the plasma–air gasification of dung produced gases with specific heats of combustion of 10,500 and 10,340 kJ/kg, respectively. Calculations and experiments on dung plasma processing showed satisfactory agreement. In this research, exergy analysis was used to quantify the efficiency of the plasma gasification of biomass. One of the research tasks was to develop a methodology and establish standards for the further standardization of monitoring the toxic emissions of dioxins, furans, and Benzo[a]pyrene.

Suggested Citation

  • Vladimir E. Messerle & Alexandr B. Ustimenko & Oleg A. Lavrichshev & Marina K. Nugman, 2024. "The Gasification and Pyrolysis of Biomass Using a Plasma System," Energies, MDPI, vol. 17(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5594-:d:1517267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5594/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5594/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Haoran & Chen, Heng & Fan, Lanxin & Pan, Peiyuan & Xu, Gang & Wu, Lining, 2024. "Performance analysis of a novel co-generation system integrating a small modular reactor and multiple hydrogen production equipment considering peak shaving," Energy, Elsevier, vol. 302(C).
    2. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    3. Wang, Yuting & Chen, Heng & Qiao, Shichao & Pan, Peiyuan & Xu, Gang & Dong, Yuehong & Jiang, Xue, 2023. "A novel methanol-electricity cogeneration system based on the integration of water electrolysis and plasma waste gasification," Energy, Elsevier, vol. 267(C).
    4. Li, Sarengaowa & Chen, Heng & Yuan, Xin & Pan, Peiyuan & Xu, Gang & Wang, Xiuyan & Wu, Lining, 2024. "Energy, exergy and economic analysis of a poly-generation system combining sludge pyrolysis and medical waste plasma gasification," Energy, Elsevier, vol. 295(C).
    5. Lv, Jiayang & Wang, Yinan & Chen, Heng & Li, Wenchao & Pan, Peiyuan & Wu, Lining & Xu, Gang & Zhai, Rongrong, 2023. "Thermodynamic and economic analysis of a conceptual system combining medical waste plasma gasification, SOFC, sludge gasification, supercritical CO2 cycle, and desalination," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Yee Kai & Tan, Inn Shi & Foo, Henry Chee Yew & Tan, Yie Hua & Lam, Man Kee & Wong, Mee Kee, 2024. "Exergetic and exergoeconomic analyses of Eucheuma cottoni residue biorefinery for co-production of polylactic acid and electricity," Energy, Elsevier, vol. 300(C).
    2. Pawlak-Kruczek, Halina & Mularski, Jakub & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Mączka, Tadeusz & Sadowski, Krzysztof & Hulisz, Patryk, 2023. "Application of plasma burners for char combustion in a pulverized coal-fired (PC) boiler – Experimental and numerical analysis," Energy, Elsevier, vol. 279(C).
    3. Jia, Dongqing & Li, Xingmei & Gong, Xu & Lv, Xiaoyan & Shen, Zhong, 2024. "Bi-level strategic bidding model of novel virtual power plant aggregating waste gasification in integrated electricity and hydrogen markets," Applied Energy, Elsevier, vol. 357(C).
    4. Mohammad Ostadi & Daniel R. Cohn & Guiyan Zang & Leslie Bromberg, 2024. "CH 4 and CO 2 Reductions from Methanol Production Using Municipal Solid Waste Gasification with Hydrogen Enhancement," Sustainability, MDPI, vol. 16(19), pages 1-16, October.
    5. Slavin, Brittney & Wang, Ruiqi & Roy, Dibyendu & Ling-Chin, Janie & Roskilly, Anthony Paul, 2024. "Techno-economic analysis of direct air carbon capture and hydrogen production integrated with a small modular reactor," Applied Energy, Elsevier, vol. 356(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5594-:d:1517267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.