IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5531-d1514692.html
   My bibliography  Save this article

An Overview of the R&D of Flywheel Energy Storage Technologies in China

Author

Listed:
  • Xingjian Dai

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaoting Ma

    (Xi’an XIDIAN Power System Co., Ltd., Xi’an 710118, China)

  • Dongxu Hu

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jibing Duan

    (CNNP Huihai Wind Power Investment Co., Ltd., Hohhot 010010, China)

  • Haisheng Chen

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The literature written in Chinese mainly and in English with a small amount is reviewed to obtain the overall status of flywheel energy storage technologies in China. The theoretical exploration of flywheel energy storage (FES) started in the 1980s in China. The experimental FES system and its components, such as the flywheel, motor/generator, bearing, and power electronic devices, were researched around thirty years ago. About twenty organizations devote themselves to the R&D of FES technology, which is developing from theoretical and laboratory research to the stage of engineering demonstration and commercial application. After the research and accumulation in the past 30 years, the initial FES products were developed by some companies around 10 years ago. Today, the overall technical level of China’s flywheel energy storage is no longer lagging behind that of Western advanced countries that started FES R&D in the 1970s. The reported maximum tip speed of the new 2D woven fabric composite flywheel arrived at 900 m/s in the spin test. A steel alloy flywheel with an energy storage capacity of 125 kWh and a composite flywheel with an energy storage capacity of 10 kWh have been successfully developed. Permanent magnet (PM) motors with power of 250–1000 kW were designed, manufactured, and tested in many FES assemblies. The lower loss is carried out through innovative stator and rotor configuration, optimizing magnetic flux and winding arrangement for harmonic magnetic field suppression. Permanent magnetic bearings with high load ability up to 50–100 kN were developed both for a 1000 kW/16.7 kWh flywheel used for the drilling practice application in hybrid power of an oil well drilling rig and for 630 kW/125 kWh flywheels used in the 22 MW flywheel array applied to the flywheel and thermal power joint frequency modulation demonstration project. It is expected that the FES demonstration application power stations with a total cumulative capacity of 300 MW will be built in the next five years.

Suggested Citation

  • Xingjian Dai & Xiaoting Ma & Dongxu Hu & Jibing Duan & Haisheng Chen, 2024. "An Overview of the R&D of Flywheel Energy Storage Technologies in China," Energies, MDPI, vol. 17(22), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5531-:d:1514692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Fotopoulou & Panagiotis Pediaditis & Niki Skopetou & Dimitrios Rakopoulos & Sotirios Christopoulos & Avraam Kartalidis, 2024. "A Review of the Energy Storage Systems of Non-Interconnected European Islands," Sustainability, MDPI, vol. 16(4), pages 1-24, February.
    2. Obu Samson Showers & Sunetra Chowdhury, 2024. "Enhancing Energy Supply Reliability for University Lecture Halls Using Photovoltaic-Battery Microgrids: A South African Case Study," Energies, MDPI, vol. 17(13), pages 1-26, June.
    3. Dongxu Hu & Xingjian Dai & Bo Xie & Wen Li & Hongyan Yu & Haisheng Chen, 2024. "Fatigue Life of Flywheel Energy Storage Rotors Composed of 30Cr2Ni4MoV Steel," Energies, MDPI, vol. 17(15), pages 1-18, July.
    4. Andrew J. Hutchinson & Daniel T. Gladwin, 2024. "Standalone and Hybridised Flywheels for Frequency Response Services: A Techno-Economic Feasibility Study," Energies, MDPI, vol. 17(11), pages 1-23, May.
    5. Hamid Soleimani & Daryoush Habibi & Mehrdad Ghahramani & Asma Aziz, 2024. "Strengthening Power Systems for Net Zero: A Review of the Role of Synchronous Condensers and Emerging Challenges," Energies, MDPI, vol. 17(13), pages 1-23, July.
    6. Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5531-:d:1514692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.