IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5057-d1496710.html
   My bibliography  Save this article

Zero-Trust Zero-Communication Defence against Hybrid Cyberattacks in Distributed Energy Resources Using Mean Field Reinforcement Leaning

Author

Listed:
  • Zejian Zhou

    (Electrical Engineering and Computer Science Department, University of Wyoming, Laramie, WY 82071, USA)

  • Dongliang Duan

    (Electrical Engineering and Computer Science Department, University of Wyoming, Laramie, WY 82071, USA)

  • Hao Xu

    (Electrical and Biomedical Engineering Department, University of Nevada, Reno, NV 89557, USA)

Abstract

As the evolution of smart grids accelerates, distributed energy resources (DERs) emerge as key elements in the transformation of global energy systems. However, the integration of these technologies introduces significant cybersecurity vulnerabilities, notably false data injection (FDI) and a direct load-altering attack (DLAA). Traditional load-altering attacks require a huge attack load and, thus, are not practical to implement. In contrast, in modern DER environments where households become “prosumers” with high-power energy generation, the implications of such attacks are substantially amplified. This paper considers a hybrid cyberattack that includes both FDI and a DLAA, and presents a hierarchical, optimal load adjustment framework that addresses these security concerns. A centralized optimizer first calculates the ideal load-shedding strategies for each substation, which are then securely broadcast to households. To address the complexities at the individual household level, we introduce a novel reinforcement learning algorithm termed Mean Field Deep Deterministic Policy Gradients (MF-DDPG). This algorithm employs mean-field game theory to enable decentrally coordinated decision-making among each household, making it particularly effective in zero-trust scenarios. Through this multifaceted approach, we offer a robust countermeasure against load-altering attacks, thereby enhancing the resilience and stability of advanced smart grids.

Suggested Citation

  • Zejian Zhou & Dongliang Duan & Hao Xu, 2024. "Zero-Trust Zero-Communication Defence against Hybrid Cyberattacks in Distributed Energy Resources Using Mean Field Reinforcement Leaning," Energies, MDPI, vol. 17(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5057-:d:1496710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smitha Joyce Pinto & Pierluigi Siano & Mimmo Parente, 2023. "Review of Cybersecurity Analysis in Smart Distribution Systems and Future Directions for Using Unsupervised Learning Methods for Cyber Detection," Energies, MDPI, vol. 16(4), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar A. Beg & Asad Ali Khan & Waqas Ur Rehman & Ali Hassan, 2023. "A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids," Energies, MDPI, vol. 16(22), pages 1-23, November.
    2. Mousa Mohammed Khubrani & Shadab Alam, 2023. "Blockchain-Based Microgrid for Safe and Reliable Power Generation and Distribution: A Case Study of Saudi Arabia," Energies, MDPI, vol. 16(16), pages 1-34, August.
    3. Khaoula Hassini & Ahmed Fakhfakh & Faouzi Derbel, 2023. "Optimal Placement of μ PMUs in Distribution Networks with Adaptive Topology Changes," Energies, MDPI, vol. 16(20), pages 1-27, October.
    4. Murilo Eduardo Casteroba Bento, 2024. "Load Margin Assessment of Power Systems Using Physics-Informed Neural Network with Optimized Parameters," Energies, MDPI, vol. 17(7), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5057-:d:1496710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.