IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4976-d1492511.html
   My bibliography  Save this article

Comparison of Optimal SASS (Sparsity-Assisted Signal Smoothing) and Linear Time-Invariant Filtering Techniques Dedicated to 200 MW Generating Unit Signal Denoising

Author

Listed:
  • Marian Łukaniszyn

    (Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland)

  • Michał Lewandowski

    (Department of Electrical Engineering and Computer Science, Faculty of Electrical Engineering, Silesian University of Technology, Akademicka Street 10, 44-100 Gliwice, Poland
    These authors are participants in research fellowship at Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland.)

  • Łukasz Majka

    (Department of Electrical Engineering and Computer Science, Faculty of Electrical Engineering, Silesian University of Technology, Akademicka Street 10, 44-100 Gliwice, Poland
    These authors are participants in research fellowship at Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland.)

Abstract

Performing reliable calculations of power system dynamics requires accurate models of generating units. To be able to determine the parameters of the models with the required precision, a well-defined testing procedure is used to record various unit transient signals. Unfortunately, the recorded signals usually contain discontinuities, which complicates the removal of the existing harmonic interferences and noise. A set of four transient signals recorded during typical disturbance tests of a 200 MW power-generating unit was used as both training and research material for the signal denoising/interference removal methods compared in the paper. A systematic analysis of the measured transient signals was conducted, leading to the creation of a coherent mathematical model of the signals. Next, a method for denoising power-generating unit transient signals is proposed. The method is based on Sparsity-Assisted Signal Smoothing (SASS) combined with optimization algorithms (simulated annealing and Nelder-Mead simplex) and is called an optimal SASS method. The proposed optimal SASS method is compared to its direct Linear Time-Invariant (LTI) competitors, such as low-pass and notch filters. The LTI methods are based on the same filter types (Butterworth filters) and zero-phase filtering principle as the SASS method. A set of specially generated test signals (based on a developed mathematical model of the signals) is used for the performance evaluation of all presented filtering methods. Finally, it is concluded that—for the considered class of signals—the optimal SASS method might be a valuable noise removal technique.

Suggested Citation

  • Marian Łukaniszyn & Michał Lewandowski & Łukasz Majka, 2024. "Comparison of Optimal SASS (Sparsity-Assisted Signal Smoothing) and Linear Time-Invariant Filtering Techniques Dedicated to 200 MW Generating Unit Signal Denoising," Energies, MDPI, vol. 17(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4976-:d:1492511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pruski, Piotr & Paszek, Stefan, 2018. "Calculations of power system electromechanical eigenvalues based on analysis of instantaneous power waveforms at different disturbances," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 104-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Gocki & Agnieszka Jakubowska-Ciszek & Piotr Pruski, 2022. "Comparative Analysis of a New Class of Symmetric and Asymmetric Supercapacitors Constructed on the Basis of ITO Collectors," Energies, MDPI, vol. 16(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4976-:d:1492511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.