IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4927-d1490762.html
   My bibliography  Save this article

A New Stochastic Controller for Efficient Power Extraction from Small-Scale Wind Energy Conversion Systems under Random Load Consumption

Author

Listed:
  • Abdelhakim Tighirt

    (LISTI, National School of Applied Sciences, Ibn Zohr University, Agadir P.O. Box 1136, Morocco)

  • Mohamed Aatabe

    (LISTI, National School of Applied Sciences, Ibn Zohr University, Agadir P.O. Box 1136, Morocco)

  • Fatima El Guezar

    (LISTI, National School of Applied Sciences, Ibn Zohr University, Agadir P.O. Box 1136, Morocco
    Faculty of Sciences, Ibn Zohr University, Agadir P.O. Box 8106, Morocco)

  • Hassane Bouzahir

    (LISTI, National School of Applied Sciences, Ibn Zohr University, Agadir P.O. Box 1136, Morocco)

  • Alessandro N. Vargas

    (Labcontrol, Universidade Tecnológica Federal do Paraná, (UTFPR), Av. Alberto Carazzai 1640, Cornelio Procópio 86300-000, PR, Brazil)

  • Gabriele Neretti

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

Abstract

This paper presents an innovative scheme to enhance the efficiency of power extraction from wind energy conversion systems (WECSs) under random loads. The study investigates how stochastic load consumption, modeled and predicted using a Markov chain process, impacts WECS efficiency. The suggested approach regulates the rectifier voltage rather than the rotor speed, making it a sensorless and reliable method for small-scale WECSs. Nonlinear WECS dynamics are represented using Takagi–Sugeno (TS) fuzzy modeling. Furthermore, the closed-loop system’s stochastic stability and recursive feasibility are guaranteed regardless of random load changes. The performance of the suggested controller is compared with the traditional perturb-and-observe (P&O) algorithm under varying wind speeds and random load variations. Simulation results show that the proposed approach outperforms the traditional P&O algorithm, demonstrating higher tracking efficiency, rapid convergence to the maximum power point (MPP), reduced steady-state oscillations, and lower error indices. Enhancing WECS efficiency under unpredictable load conditions is the primary contribution, with simulation results indicating that the tracking efficiency increases to 99.93 % .

Suggested Citation

  • Abdelhakim Tighirt & Mohamed Aatabe & Fatima El Guezar & Hassane Bouzahir & Alessandro N. Vargas & Gabriele Neretti, 2024. "A New Stochastic Controller for Efficient Power Extraction from Small-Scale Wind Energy Conversion Systems under Random Load Consumption," Energies, MDPI, vol. 17(19), pages 1-27, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4927-:d:1490762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4927/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4927/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    2. Mendi, Balaji & Pattnaik, Monalisa & Srungavarapu, Gopalakrishna, 2024. "A single current sensor based adaptive step size MPPT control of a small scale variable speed wind energy conversion system," Applied Energy, Elsevier, vol. 357(C).
    3. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    4. Kesraoui, M. & Korichi, N. & Belkadi, A., 2011. "Maximum power point tracker of wind energy conversion system," Renewable Energy, Elsevier, vol. 36(10), pages 2655-2662.
    5. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    6. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    7. Şerban, I. & Marinescu, C., 2012. "A sensorless control method for variable-speed small wind turbines," Renewable Energy, Elsevier, vol. 43(C), pages 256-266.
    8. Ajami, Ali & Alizadeh, Rana & Elmi, Mahdi, 2016. "Design and control of a grid tied 6-switch converter for two independent low power wind energy resources based on PMSGs with MPPT capability," Renewable Energy, Elsevier, vol. 87(P1), pages 532-543.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Lu & Xue, Fei & Qin, Zijian & Shi, Jiying & Qiao, Wen & Yang, Wenjing & Yang, Ting, 2019. "Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system," Applied Energy, Elsevier, vol. 248(C), pages 567-575.
    2. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    3. Dongran Song & Jian Yang & Mei Su & Anfeng Liu & Yao Liu & Young Hoon Joo, 2017. "A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics," Energies, MDPI, vol. 10(5), pages 1-18, May.
    4. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
    5. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    6. Abrar Ahmed Chhipa & Vinod Kumar & Raghuveer Raj Joshi & Prasun Chakrabarti & Michal Jasinski & Alessandro Burgio & Zbigniew Leonowicz & Elzbieta Jasinska & Rajkumar Soni & Tulika Chakrabarti, 2021. "Adaptive Neuro-Fuzzy Inference System-Based Maximum Power Tracking Controller for Variable Speed WECS," Energies, MDPI, vol. 14(19), pages 1-19, October.
    7. Wollz, Danilo Henrique & da Silva, Sergio Augusto Oliveira & Sampaio, Leonardo Poltronieri, 2020. "Real-time monitoring of an electronic wind turbine emulator based on the dynamic PMSG model using a graphical interface," Renewable Energy, Elsevier, vol. 155(C), pages 296-308.
    8. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    9. Song, Dongran & Yang, Jian & Cai, Zili & Dong, Mi & Su, Mei & Wang, Yinghua, 2017. "Wind estimation with a non-standard extended Kalman filter and its application on maximum power extraction for variable speed wind turbines," Applied Energy, Elsevier, vol. 190(C), pages 670-685.
    10. Fathabadi, Hassan, 2016. "Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique," Energy, Elsevier, vol. 113(C), pages 1219-1230.
    11. Fathabadi, Hassan, 2017. "Novel standalone hybrid solar/wind/fuel cell/battery power generation system," Energy, Elsevier, vol. 140(P1), pages 454-465.
    12. Xuan Chau Le & Minh Quan Duong & Kim Hung Le, 2022. "Review of the Modern Maximum Power Tracking Algorithms for Permanent Magnet Synchronous Generator of Wind Power Conversion Systems," Energies, MDPI, vol. 16(1), pages 1-25, December.
    13. Kortabarria, Iñigo & Andreu, Jon & Martínez de Alegría, Iñigo & Jiménez, Jaime & Gárate, José Ignacio & Robles, Eider, 2014. "A novel adaptative maximum power point tracking algorithm for small wind turbines," Renewable Energy, Elsevier, vol. 63(C), pages 785-796.
    14. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
    15. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    16. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    17. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    18. Thiaux, Yaël & Dang, Thu Thuy & Schmerber, Louis & Multon, Bernard & Ben Ahmed, Hamid & Bacha, Seddik & Tran, Quoc Tuan, 2019. "Demand-side management strategy in stand-alone hybrid photovoltaic systems with real-time simulation of stochastic electricity consumption behavior," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Pagnini, Luisa & Piccardo, Giuseppe & Repetto, Maria Pia, 2018. "Full scale behavior of a small size vertical axis wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 41-55.
    20. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4927-:d:1490762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.