IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4913-d1489847.html
   My bibliography  Save this article

Predictive Artificial Intelligence Models for Energy Efficiency in Hybrid and Electric Vehicles: Analysis for Enna, Sicily

Author

Listed:
  • Maksymilian Mądziel

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Tiziana Campisi

    (Department of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy)

Abstract

Developments in artificial intelligence techniques allow for an improvement in sustainable mobility strategies with particular reference to energy consumption estimates of electric vehicles (EVs). This research proposes a vehicle energy model developed on the basis of deep neural network (DNN) technology. This study also explores the potential application of the model developed for the movement data of new vehicles in the province of Enna, Sicily, Italy, which are characterized by numerous attractors and the increasing number of hybrid and electric cars circulating. The energy model for electric vehicles shows high accuracy and versatility, requiring vehicle velocity and acceleration as input data to predict energy consumption. This research article also provides recommendations for the energy modeling of electric vehicles and outlines additional steps for model development. The implemented methodological approach and its results can be used by transport decision-makers to plan new transport policies in Italian cities aimed at optimizing vehicle charging infrastructure. They can also help vehicle users accurately estimate energy consumption, generate maps, and identify locations with the highest energy consumption.

Suggested Citation

  • Maksymilian Mądziel & Tiziana Campisi, 2024. "Predictive Artificial Intelligence Models for Energy Efficiency in Hybrid and Electric Vehicles: Analysis for Enna, Sicily," Energies, MDPI, vol. 17(19), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4913-:d:1489847
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Park, Musik & Wang, Zhiyuan & Li, Lanyu & Wang, Xiaonan, 2023. "Multi-objective building energy system optimization considering EV infrastructure," Applied Energy, Elsevier, vol. 332(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Gitae Kim, 2024. "Electric Vehicle Routing Problem with States of Charging Stations," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    3. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    4. Sina Abbasi & Maryam Moosivand & Ilias Vlachos & Mohammad Talooni, 2023. "Designing the Location–Routing Problem for a Cold Supply Chain Considering the COVID-19 Disaster," Sustainability, MDPI, vol. 15(21), pages 1-24, October.
    5. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    6. Fescioglu-Unver, Nilgun & Yıldız Aktaş, Melike, 2023. "Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Lu, M.L. & Sun, Y.J. & Kokogiannakis, G. & Ma, Z.J., 2024. "Design of flexible energy systems for nearly/net zero energy buildings under uncertainty characteristics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    8. Zhang, Yonggang & Dilanchiev, Azer, 2022. "Economic recovery, industrial structure and natural resource utilization efficiency in China: Effect on green economic recovery," Resources Policy, Elsevier, vol. 79(C).
    9. María Paz Sáez-Pérez & Luisa María García Ruiz & Francesco Tajani, 2024. "Assessment of the Thermal Properties of Buildings in Eastern Almería (Spain) during the Summer in a Mediterranean Climate," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    10. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    11. Meryem Abid & Mohamed Tabaa & Hanaa Hachimi, 2024. "Electric Vehicle Routing Problem with an Enhanced Vehicle Dispatching Approach Considering Real-Life Data," Energies, MDPI, vol. 17(7), pages 1-27, March.
    12. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    13. Jia, Jiandong & Li, Haiqiao & Wu, Di & Guo, Jiacheng & Jiang, Leilei & Fan, Zeming, 2024. "Multi-objective optimization study of regional integrated energy systems coupled with renewable energy, energy storage, and inter-station energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    14. Yong Wang & Jingxin Zhou & Yaoyao Sun & Xiuwen Wang & Jiayi Zhe & Haizhong Wang, 2022. "Electric Vehicle Charging Station Location-Routing Problem with Time Windows and Resource Sharing," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    15. Kalim Ullah & Taimoor Ahmad Khan & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Basem Alamri & Faheem Ali & Sajjad Ali & Sheraz Khan, 2022. "Demand Side Management Strategy for Multi-Objective Day-Ahead Scheduling Considering Wind Energy in Smart Grid," Energies, MDPI, vol. 15(19), pages 1-14, September.
    16. Danny García Sánchez & Alejandra Tabares & Lucas Teles Faria & Juan Carlos Rivera & John Fredy Franco, 2022. "A Clustering Approach for the Optimal Siting of Recharging Stations in the Electric Vehicle Routing Problem with Time Windows," Energies, MDPI, vol. 15(7), pages 1-19, March.
    17. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    18. Nan Ding & Jingshuai Yang & Zhibin Han & Jianming Hao, 2022. "Electric-Vehicle Routing Planning Based on the Law of Electric Energy Consumption," Mathematics, MDPI, vol. 10(17), pages 1-27, August.
    19. Aoqi Xu & Man-Wen Tian & Behnam Firouzi & Khalid A. Alattas & Ardashir Mohammadzadeh & Ebrahim Ghaderpour, 2022. "A New Deep Learning Restricted Boltzmann Machine for Energy Consumption Forecasting," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    20. Zhao, Xue & Xie, Chengyuan & Huang, Lu & Wang, Yaru & Han, Tongyun, 2023. "How digitalization promotes the sustainable integration of culture and tourism for economic recovery," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 988-1000.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4913-:d:1489847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.