IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4723-d1483096.html
   My bibliography  Save this article

Review of the Transition to Energy 5.0 in the Context of Non-Renewable Energy Sustainable Development

Author

Listed:
  • Sergey Zhironkin

    (Department of Trade and Marketing, Siberian Federal University, 79 Svobodny Av., 660041 Krasnoyarsk, Russia
    Institute of Economics and Management, T.F. Gorbachev Kuzbass State Technical University, 28 Vesennya St., 650000 Kemerovo, Russia)

  • Fares Abu-Abed

    (Department of Electronic Computers, Faculty of lnformation Technologies, Tver State Technical University, 22 Afanasiya Nikitina Emb., 170026 Tver, Russia
    Department of Mathematics and Natural Sciences, Gulf University for Science and Technology (Mishref Campus), Hawally 32093, Kuwait)

Abstract

The problems of achieving the UN’s sustainable development goals related to providing both developed and developing countries with cheap and accessible energy, as well as in the context of taking climate action, cannot be solved, on the one hand, without a transition to Energy 5.0, within the framework of the upcoming Fifth Industrial Revolution. On the other hand, it cannot be carried out without ensuring a “seamless” Fourth Energy Transition, which poses new challenges for the technological modernization of power production from non-renewables. Along with this, the expected transition to a human-centric Industry 5.0 challenges researchers to identify obstacles to the diffusion of technologies within hydrocarbon production industries and ways to overcome them in regard to the upcoming Mining 5.0 and Oil and Gas 5.0 environment. In this regard, the purpose of this review is to analyze the structure of scientific publications in this field of research on the human-centric development of technologies in terms of these platforms in order to outline the basis for further research. To achieve this goal, this review provides a multifaceted overview of the main technologies of Industry 5.0, embodied within Energy 5.0, Mining 5.0, and Oil and Gas 5.0, such as collaborative artificial intelligence and co-bots, digital tees, the industrial Internet of Everything, smart cities, and industry; their human-centric nature is revealed as the basis for achieving significant sustainable development goals. This review concludes that there is a need for further analysis of certain areas of the transition to Energy 5.0, such as the human-centric development of digital technologies of Industry 5.0 in the fuel and energy sector, and the revision of its role in terms of achieving the sustainable development goals in the future.

Suggested Citation

  • Sergey Zhironkin & Fares Abu-Abed, 2024. "Review of the Transition to Energy 5.0 in the Context of Non-Renewable Energy Sustainable Development," Energies, MDPI, vol. 17(18), pages 1-32, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4723-:d:1483096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
    2. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    3. Sergey Zhironkin & Dawid Szurgacz, 2023. "Mining Technologies Innovative Development II: The Overview," Energies, MDPI, vol. 16(15), pages 1-5, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
    2. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    3. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    4. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    5. Krupa, Joel & Harvey, L.D. Danny, 2017. "Renewable electricity finance in the United States: A state-of-the-art review," Energy, Elsevier, vol. 135(C), pages 913-929.
    6. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    7. Li, Shuangqi & He, Hongwen & Li, Jianwei, 2019. "Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology," Applied Energy, Elsevier, vol. 242(C), pages 1259-1273.
    8. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    9. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    10. Kevin Ummel & Charles Fant, 2014. "Planning for Large-Scale Wind and Solar Power in South Africa: Identifying Cost-Effective Deployment Strategies Through Spatiotemporal Modelling," WIDER Working Paper Series wp-2014-121, World Institute for Development Economic Research (UNU-WIDER).
    11. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    12. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    13. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    14. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    15. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    16. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    17. Ronnie D. Lipschutz & Dustin Mulvaney, 2013. "The road not taken, round II: centralized vs. distributed energy strategies and human security," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 22, pages 483-506, Edward Elgar Publishing.
    18. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    19. Lacchini, Corrado & Rüther, Ricardo, 2015. "The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 786-798.
    20. Yuxue Yang & Xuejiao Tan & Yafei Shi & Jun Deng, 2023. "What are the core concerns of policy analysis? A multidisciplinary investigation based on in-depth bibliometric analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4723-:d:1483096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.